首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 940 毫秒
1.
运用生命周期评价(LCA)方法对采用醇胺溶液(MEA)吸收CO2的2×300MW燃煤电厂CO2捕集和封存(CCS)技术改造过程进行了系统地分析,分别计算了系统建设、运行及退役,应用MEA吸收CO2、对CO2压缩并管道运输和地质储存等各阶段的CO2排放量.结果表明:全生命周期内采用MEA化学吸收法CCS技术改造后的燃煤电厂CO2的直接减排率可达86.24%左右,CCS系统全生命周期CO2排放量为960.93 t/d;电厂发电运行过程与CCS系统运行的CO2排放量在全生命周期排放中占较大比重,分别为46.96%和47.62%左右;采用MEA技术捕集CO2并进行封存的成本约为23.80~44.90美元/t.  相似文献   

2.
碳捕集与封存技术(CCS)成本及政策分析   总被引:1,自引:0,他引:1  
张建府 《中外能源》2011,16(3):21-25
当前,减排CO2的呼声日益高涨。在未来相当长的时间内,我国一次能源仍将以煤为主,而用于发电的煤炭量占到煤炭消费总量的一半以上,已成为国内CO2排放的重要来源。整体煤气化联合循环(IGCC)发电技术不仅具有燃料来源广、发电效率提升空间大等优点,而且能以较低的成本实现CO2减排。以IGCC碳捕集结合强化采油为例,分析碳捕集与封存(CCS)全过程CO2减排成本。结果表明,在IGCC电站进行碳捕集结合强化采油的情景下,捕集CO2的IGCC系统的发电成本低于不捕集CO2的IGCC电站的发电成本。CO2减排成本主要受井口油价及CO2利用率影响,当井口油价超过14.642美元/bbl时,CO2减排成本为负值。CCS的发展将经历示范、扩大规模和商业化三个阶段,针对不同的发展阶段,政府应分别采取相应的政策措施。在示范阶段,应加强对相关技术研究的支持,提供财政补贴;在扩大规模阶段,应重点采取财政补贴措施,并配以CCS发电配额标准和CCS电力贸易体系;在商业化阶段,政府已无需继续提供财政补贴,而CCS发电配额标准和认证贸易体系仍将是一个有效的方法。  相似文献   

3.
预测世界二氧化碳排放量峰值40Gt/a出现在2025年,此后年均下降4.1%,2050年才能达到IEA Blue Map情景要求的14Gt/a,届时人均排放量为1.5t,由于总降幅未达到80%,仍需努力减排,争取2070年世界二氧化碳排放量达到10Gt/a。中国2005~2025年累积二氧化碳排放量约160Gt,2025~2050年间约194Gt,2050~2070年间约75Gt,2005~2070年间合计约472Gt,约占当时世界份额的27%。希望中国碳排放峰值出现在2025年而不是2030年,即使能控制当年二氧化碳排放量达到10.5Gt/a的水平,此后年均下降2.9%,2050年达到5Gt/a的较高水平,年人均排放量降低到3.4t,仍高于世界均值。为了与世界总降幅同步,还需要进一步减排,争取2070年二氧化碳排放量达到2.5Gt/a。为了在2050年达到期望的碳减排目标,必须优化中国的产业结构和能源结构,发电、钢铁、水泥是中国节能减排的重点。受生物质资源不足、煤化工生产油品只能适度发展、氢燃料替代目前尚无确切时间推广节点的制约,预计2050年中国替代石油燃料的比率在20%左右,低于欧美地区50%~70%的...  相似文献   

4.
能源流向图能够清晰、直观地核算展示从生产调入、加工转换,直至终端消费的上海煤炭利用全景全程。该文基于2010年"上海煤炭流向与先进燃煤发电路线图",系统分析各个环节煤炭数据的基本构成和内在联系,重点关注发电用煤的变化趋势和深层措施,多情景预测上海煤炭利用的优化目标和实现路径。研究显示,上海煤炭消费的"饱和点"已于2011年出现,煤炭消费已开始向能源利用效率高、污染排放控制好的发电领域集中。以2012年全市煤炭消费量为基准,关闭、替代分散中小锅炉窑炉约能削减耗煤300万t;关闭、改造热电联产机组约能削减耗煤300万t;关闭、升级亚临界等低效机组,即使实现将所有燃煤机组全部升级为超超临界机组的强化情景,也只能再削减耗煤250万t左右。若要考虑能效、排放、装备技术、企业成本、居民电价承受力等多目标最优,就必须进行煤炭全供应链、以及煤电全生命周期等系统分析,绘制多方案行动路线图,该文是相关系列研究的初探。  相似文献   

5.
预测世界二氧化碳排放量峰值40Gt/a出现在2025年,此后年均下降4.1%,2050年才能达到IEA Blue Map情景要求的14Gt/a,届时人均排放量为1.5t,由于总降幅未达到80%,仍需努力减排,争取2070年世界二氧化碳排放量达到10Gt/a。中国2005~2025年累积二氧化碳排放量约160Gt,2025~2050年间约194Gt,2050~2070年间约75Gt,2005~2070年间合计约472Gt,约占当时世界份额的27%。希望中国碳排放峰值出现在2025年而不是2030年,即使能控制当年二氧化碳排放量达到10.5Gt/a的水平,此后年均下降2.9%,2050年达到5Gt/a的较高水平,年人均排放量降低到3.4t,仍高于世界均值。为了与世界总降幅同步,还需要进一步减排,争取2070年二氧化碳排放量达到2.5Gt/a。为了在2050年达到期望的碳减排目标,必须优化中国的产业结构和能源结构,发电、钢铁、水泥是中国节能减排的重点。受生物质资源不足、煤化工生产油品只能适度发展、氢燃料替代目前尚无确切时间推广节点的制约,预计2050年中国替代石油燃料的比率在20%左右,低于欧美地区50%~70%的比率。但通过提倡绿色出行、提高发动机燃油效率、乘用车过渡到以纯电动汽车和混合动力汽车为主、石油替代步伐加快且替代方式多样化、提高石油加工轻质化程度、加大天然气在CHP或DES/CCHP的高效利用等措施,将2050年的原油消费量控制在6.0×108t仍然有可能。加工6×108t原油可生产1.08×108t化工轻油,CBTL生产的油品总量中还包含1200×104t石脑油,合计化工轻油量为1.20×108t,加之还可由煤化工MTO/MTP生产一定量的烯烃,可满足基本有机化工原料的需求。只有通过各部门的综合努力,低碳排放的A或B情景才有可能实现,任何部门的牵制都将影响全国碳减排目标的实现。  相似文献   

6.
刘晓立  张鲲  曾鸣 《水电能源科学》2013,31(4):226-228,244
根据国际能源机构(IEA)的评估标准选出合适的低碳基荷发电技术,分析了引入碳价格后发电成本和温室气体排放强度的变动情况,并研究碳定价机制对各发电技术相对竞争力的影响。结果表明,核电成本的排放量最低,竞争优势最大;太阳能热利用成本的排放量最高,相对竞争力最小。目前依靠碳捕捉与封存技术(CCS)的传统煤粉蒸汽锅炉发电(PFcoal/ CCS)、联合循环发电系统(IGCC/ CCS)、联合循环燃气涡轮(CCGT/ CCS)技术是有风险的策略。  相似文献   

7.
舟丹 《中外能源》2014,(6):59-59
正中国在碳捕集与封存(CCS)方面积极与澳大利亚、英国等技术发达国家合作,积极发展碳捕集与封存的试点项目。2008年7月,中国华能集团与澳大利亚联邦科学工业研究组织(CSIRO)正式宣布在北京建的燃煤电厂二氧化碳(CO2)捕集示范工程建成投产。这项由华能控股的,由西安热工研究院设计完成的华能北京热电厂CO2捕集示范工程,是中国首个燃煤电厂烟气CO2捕集示范工程,预计其年回收CO2能力可达到3000t。  相似文献   

8.
据日本《电气新闻》1993年9月报道,日本各电力公司鉴于环保问题使燃煤电厂选址更加困难,但目前技术水平还难以做到将燃煤电厂产生的二氧化碳全部或大廉价、有效地回收,因而考虑采取较现实的办法是提高发电效率,使二氧化碳总排放量下降。为此,较有希望的技术措施是采用带增压流化床的联合循环发电(PFBC)和整体煤气化联合循环发电(IGCC)。这两种发电系统较传统的火电厂发电的效率高,设备紧凑,占地面积少,并可燃烧不同的煤种,有较好的负荷跟踪性。  相似文献   

9.
中国二氧化碳捕捉与封存(CCS)技术早期实施方案构建研究   总被引:1,自引:0,他引:1  
匡建超  王众  霍志磊 《中外能源》2012,17(12):17-23
一个完整的二氧化碳捕捉与封存(CCS)系统包含了捕捉、运输和封存三个环节,且每个环节又有多种技术选择,在CCS大规模推广的初期,如何根据本国国情,选择最合适的备选技术进行组合,构建最佳的实施方案,已成为CCS研究中一个亟待解决的问题.为此引入CCS链的概念,从排放源、捕捉技术、运输技术和封存技术4个方面分析比较CCS各备选技术的优势和不足.对于老电厂的CCS改造,超临界是最佳的实施对象;而对于新建电厂,IGCC是最佳的实施对象.燃烧后捕捉将是匹配煤粉(PC)电厂的捕捉技术,而燃烧前捕捉则应匹配新建IGCC电厂.管道运输将是我国早期实施CCS的运输方式.注二氧化碳驱油提高采收率(CO2-EOR)和深部盐水层封存将是我国早期实施CCS的首选封存技术.最终构建了4条CCS链作为我国早期的CCS实施方案,即超临界PC电厂+燃烧后捕捉+管道运输+EOR封存;超临界PC电厂+燃烧后捕捉+管道运输+深部盐水层封存;IGCC电厂+燃烧前捕捉+管道运输+EOR封存;IGCC电厂+燃烧前捕捉+管道运输+深部盐水层封存.  相似文献   

10.
为了减少二氧化碳排放量,根据中国能源消费量大和人口众多的国情,需要控制2050年个人乘用车保有量不超过3×108辆;石油消费量控制在6.0×108t;将城市商业和居住领域人均天然气消费量提高到200~250m3,天然气发电消费量提高到3000×108~3500×108m3,消费总量达到9000×108m3;将煤炭消费量控制在一次能源需求量的36%左右;人均电力消费量提高到8000k W·h。应从2030年起规模化、商业化地实施二氧化碳捕集与封存(CCS)措施。根据IPCC第五次评估报告(AR5)第一工作组报告第11章和第12章的评估数据,分析碳排放量对远期(至2100年)及未来更长时期(至2300年)气候变化的影响。按照比较符合实际的RCP4.5情景数据,根据预估的中远期的碳排放量,预测21世纪下半叶大气气温将逐渐升高,23世纪全球平均温升可达2.5℃±0.6℃。IPCC预测2050年全球温室气体排放量将到达峰值(约50Gt二氧化碳当量),然后逐步降低,到2080年后稳定在约25Gt二氧化碳当量的水平。21世纪末世界人均二氧化碳排放量将达到2t的水平,对发展中国家而言碳减排压力仍然相当大,需采取严格而有效的碳减排措施。欧盟新近向联合国提出的全球2050年减排目标,与中国2030年达到碳排放峰值的承诺不一致,值得关注。  相似文献   

11.
为明确燃气电厂二氧化碳捕集运行参数与系统用能关联机制,削减单位二氧化碳捕集能耗和成本,以450 MW级燃气电厂二氧化碳捕集与封存(carbon capture and storage, CCS)示范装置为研究对象,介绍CCS工艺的主要流程;通过对吸收塔和再生塔的系统性试验,对比分析了MEA和AMP-PZ这2种吸收剂的性能;考察烟气温度、吸收塔液气比、解吸塔压力、二氧化碳捕获率等工艺参数对再生能耗的影响。结果表明:MEA和AMP-PZ在吸收塔烟气温度为38℃、液气比分别为0.54和0.42、再生温度为112℃的运行条件下,再生能耗分别为4.49、4.24 MJ/kg。  相似文献   

12.
舟丹 《中外能源》2014,(6):41-41
正碳捕集与封存(简称CCS)是指将大型发电厂所产生的二氧化碳(CO2)收集起来,并用各种方法储存以避免其排放到大气中的一种技术。这种技术被认为是未来大规模减少温室气体排放、减缓全球变暖最经济、可行的方法。CCS技术可以分为捕集、运输以及封存三个步骤,商业化的二氧化碳捕集已经运营了一段时间,技术已发展得较为成熟,而二氧化碳封存技术各国还在进行大规模的实验。二氧化碳的捕集方式主要有三种:燃烧前捕集、富氧燃烧和燃烧后捕集。燃烧前捕集主要运用于IGCC(整体煤气化联  相似文献   

13.
CO2是能源与环境生物活动循环的依存产物,工业化后煤炭等化石燃料的使用产生了大量的CO2排放,打破了CO2的自然生态平衡。介绍了CO2的来源,分析了燃煤发电CO2的排放量,我国每年燃煤发电约排放C0230.7×10^8t,指出燃煤发电是减排CO2的重点。提出CO2的利用与处置的方法主要有:CO2和合成氨加工成尿素,并发展大颗粒尿素促进造林绿化;美国正在建的CO2零排放燃煤发电装置,采用了CO2收集与封存(CCS)技术,以及煤制油清洁燃料联产电力。  相似文献   

14.
乐观地估计,如果2050年允许中国排放二氧化碳80×108t,其中50×108t可排入大气层,剩余30×108t需要地质封存,碳捕集与封存(CCS)任务十分艰巨。预计可物理或化学利用的二氧化碳总量微乎其微,不会超过1×108t。从增产原油角度看,EOR将起到重大作用,但所占比率太小,从减排的宏观层面还应优先考虑"封存"。中国圈闭卤水层分布很广,潜在容量很大,选址相对容易,需加大适合二氧化碳地质封存的卤水层的地质选址研究。中国土壤有机碳储量仅50~100Gt碳,平均单位面积储碳量仅48.8t碳/ha,如果及时采取有效措施增加中国土壤的有机碳,今后40年应该可争取增储37Gt二氧化碳,相当于这期间累积二氧化碳排放量的1/10,可缓解碳排放的压力。岩溶对回收大气、附近地区土壤和水中的二氧化碳有明显作用,中国是名副其实的岩溶大国,宣传岩溶碳汇的作用,保护岩溶地区的地质、地貌和森林植被应该得到足够的重视。中国工业(制造业)部门排碳量太大,现在已超过欧盟。外贸输出了大量高耗能产品,净出口产品的二氧化碳排放量已占到国内二氧化碳排放量的13%~15%,这种高排碳量的外贸出口结构极不合理,调整产业结构、加大服务业的比重和增加外贸产品的科技含量有利于减少中国的二氧化碳排放量。中国目前关于CCS的文件和法规略显深度不够,执行力度不足,仍然是条块分割,划分为多个部门,各自为战,不利于CCS目标的实现。CCS工程所需资金额巨大,涉及社会、法律、教育、安全、金融等多方面工作,迫切需要政府集中力量,统筹安排,编制今后40年的CCS路线图和不同预案,纳入各时期的五年国民经济发展规划。  相似文献   

15.
《节能与环保》2017,(11):30-31
<正>在节能环保法律法规的约束和国家节能减排政策的引导和支持下,我国燃煤电厂清洁发展成效巨大。大气污染物排放量、单位发电量污染物排放量大幅下降;废水排放控制、固体废物综合利用、供电煤耗、发电水耗等均达到世界先进水平;碳排放控制水平显著提升。煤电清洁发展为我国和全球环境保护事业做出了重大贡献。  相似文献   

16.
煤炭制氢是我国当前最主要的低成本制氢方式,但制氢过程伴有大量的CO2排放,不符合低碳发展要求,需要和碳捕集与封存(CCS)技术结合.本文评估了结合CCS技术的煤炭制氢碳足迹和成本,发现:煤炭制氢结合CCS技术后,碳足迹由22.66 kgC02当量(eq)/kgH2下降至10.52kgCO2eq/kgH2,同时制氢成本增...  相似文献   

17.
针对我国以煤为主要发电用燃料的格局,燃煤锅炉所释放的粉尘占到总排放量的60%这一事实,在分析比较各种除尘技术性能基础上,得出由于静电除尘器本身对微细粒子的捕集能力有限,加之我国燃煤锅炉所产生飞灰性质差别较大影响了静电除尘器的除尘效率,从而导致电厂烟尘排放浓度超标的实际情况,结合袋式除尘器能有效捕集对人体危害大的5 μm以下的细微颗粒的优点,建议燃煤电厂锅炉安装使用袋式除尘器来捕集这些细微颗粒.  相似文献   

18.
高碳能源低碳化利用途径分析   总被引:17,自引:0,他引:17  
煤炭领域是中国发展低碳经济的重点领域,本文主要围绕发电、工业锅炉、煤化工三大用煤领域阐述煤炭提质加工技术、高效燃煤发电技术、工业锅炉洁净燃煤技术以及新型煤化工技术等低碳化途径的碳减排潜力和发展态势,为煤炭领域如何依托洁净煤技术实现高碳能源低碳化利用提供方向。  相似文献   

19.
我国首个“燃煤发电厂二氧化碳捕集示范工程项目”日前在华能北京热电厂开工建设。项目设计二氧化碳回收率大于85%,年回收二氧化碳能力为3000t,分离、提纯后的二氧化碳纯度达到99.5%以上,可用于食品行业。华能北京热电厂将成为我国第1家同时具有烟气脱硫、脱硝、二氧化碳捕集设施的高效、节能、环保燃煤电厂。  相似文献   

20.
1 概述  我国煤炭预测资源总量为5.06万亿吨,经济可采储量为1145亿吨,在我国已探明的一次能源储量中(折成标准煤)煤炭占92%,因而以煤炭为主的能源结构在本世纪内不会发生根本变化。发电是最清洁、最有效利用煤炭的方式,既可提高能源利用率,还可有利于集中高效处理烟气。  当前,最先进的常规燃煤技术发电的中等负荷电厂净效率为40%,个别高参数超临界电厂能量转换效率可以超过42%,而燃煤电厂在烟气的脱硫及除尘等净化技术上达不到环保的严格要求。近来国际社会对环境污染控制的要求日益严格,将严格限制产生温室效应的CO2的排放,此外粉尘…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号