首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
不锈钢的非线性材料特性使其构件承载性能不同于普通钢结构构件,需要开展专门的研究。通过焊接加工8个不锈钢箱形截面柱,包括奥氏体型S30408和双相型S22253两种牌号,在试件两端铰接的约束条件下开展轴心承压加载试验。试验中对板材力学性能、试件的局部与整体几何初始缺陷、纵向焊接残余应力分布和加载初偏心进行了测量。加载试验得出了板件的局部屈曲承载力与构件的相关稳定承载力,展示了从组成板件局部屈曲到构件整体弯曲屈曲的渐变失效形态。将试验结果与欧洲不锈钢规范EN 1993-1-4、直接强度法和中国冷弯薄壁型钢结构技术规范GB 50018的计算公式进行比较表明,由于欧洲规范和直接强度法没有考虑不同牌号不锈钢材料力学性能的差异,对双相型S22253构件的承载力计算偏于保守,而奥氏体型S30408构件的计算承载力偏于不安全;而中国规范GB 50018没有考虑焊接残余应力、几何缺陷和材料非线性的不利影响,高估了构件的相关稳定承载力。所得到的试验结果将为后续的数值分析与理论研究提供数据支撑。  相似文献   

2.
冷加工不锈钢椭圆中空截面结合了圆形中空截面和不锈钢的美感以及不同几何形状的横截面相对于两个主轴的结构功效。迄今为止,对这种横截面的构件尚没有结构设计指南,主要是产品相对较新,缺乏基础结构试验数据。对冷加工不锈钢椭圆空心截面受压构件的结构响应进行研究,提出设计建议。为获得结构性能的基础数据,进行一系列试验。首先,通过张拉试验建立基本的材料应力-应变关系。随后,通过短柱试验确定横截面的平均受压响应,通过弯曲试验获得极限承载力以确定不锈钢椭圆中空截面合理的弯曲曲线。对试件进行包括初始缺陷的几何性质测定。对试件的荷载位移响应进行记录并在文中给予介绍。与试验同步,进行了有限元模拟。如果有限元模拟的结果与试验结果不相符,将对个别关键参数进行进一步的研究,包括外形比例、横截面长细比和构件长细比。基于试验与数值分析结果,提出3组不锈钢椭圆中空截面受压限值以及椭圆中空截面柱合理弯曲曲线。  相似文献   

3.
《钢结构》2014,(1)
对冷弯经济型双相不锈钢受弯构件进行试验研究及数值分析。试件由屈服强度(σ0.2)为450MPa的经济型双相不锈钢板材冷轧成型。对方形和矩形截面空心型材试件进行绕强轴和弱轴的弯曲试验。利用取样试验得到的材料性能建立有限元模型,并利用弯曲试验结果对其进行验证。结果表明,该模型可以准确预测经济型双相不锈钢抗弯构件的性能。利用有限元模型进行了大量参数研究。利用现有的各种设计准则,如美国规范、澳大利亚/新西兰规范、欧洲规范以及直接强度法计算冷弯不锈钢的设计强度,并与经济型双相不锈钢梁的试验和数值分析结果以及可用的数据进行对比。为评估这些设计准则的可靠性,进行了可靠性分析。结果表明,现有设计准则计算经济型双相不锈钢受弯构件的设计强度时偏于保守。对美国规范、澳大利亚/新西兰规范、欧洲规范以及直接强度法进行了修正,提高了这些设计准则的精度。  相似文献   

4.
《钢结构》2014,(1):78-86,61
1冷弯经济型双相不锈钢弯构件试验研究及数值分析 摘要:对冷弯经济型双相不锈钢受弯构件进行试验研究及数值分析。试件由屈服强度(σ0.2)为450MPa的经济型双相不锈钢板材冷轧成型。对方形和矩形截面空心型材试件进行绕强轴和弱轴的弯曲试验。利用取样试验得到的材料性能建立有限元模型,并利用弯曲试验结果对其进行验证。结果表明,该模型可以准确预测经济型双相不锈钢抗弯构件的性能。利用有限元模型进行了大量参数研究。  相似文献   

5.
Ben Young 《钢结构》2009,(2):79-80
对冷弯不锈钢管T形节点进行试验研究,这些节点由方矩形中空截面的支撑和弦杆构成。对高强不锈钢(双相和高强度奥氏体)和普通强度不锈钢(AISI304)构件进行了测试,共进行了22个试验。试验方法:将支撑对弦杆正面所导致的全部集中力,沿试件长度施加到弦杆上。支撑和弦杆的宽度比值(β)范围为0.5~1.0,这样可以观察到弦杆正面和侧面的失效模式。将试验结果与采用澳大利亚/新西兰不锈钢结构设计标准、CIDECT和欧洲碳素钢结构设计规范的设计方法相对比。对比结果显示:采用0.1%,0.2%,0.5%和1.0%的弹性极限应力作为屈服应力,按照这些规范计算出来的设计强度略微保守。相对而言,0.2%的弹性极限应力比较适用于预测不锈钢管T形节点在使用和极限状态下的设计强度。  相似文献   

6.
为研究不锈钢圆管柱轴心受压构件的整体稳定承载性能,对9根奥氏体型和10根双相型热轧不锈钢圆管柱进行了整体稳定轴心受压试验。根据试验前测量得到的试件的几何初弯曲和试验过程中得到的荷载初偏心,分析了不锈钢构件的失稳模态和整体稳定性能承载能力。将试件的试验结果与现行《欧洲不锈钢结构规范》和CECS410∶2015《不锈钢结构技术规程》的计算结果进行了对比,结果表明:两本规范对奥氏体型和双相型不锈钢稳定承载力计算结果较试验结果均偏于保守,且双相型不锈钢构件的保守度更加显著。  相似文献   

7.
《钢结构》2012,(6):82
对壁厚超过6mm的厚壁矩形中空截面冷弯型钢进行试验研究。矩形中空截面采用两种成型方法:直接法(直接形成矩形)和间接法(先形成圆形,再转换成矩形)。采用两种方法(钻孔法和X射线衍射法)计算纵向残余应力的大小和分布。研究了沿截面周长方向和厚度方向的纵向残余应力的大小和分布。结果显示,沿厚度方向的纵向残余应力在外表面为拉力,内表面为压力,表现出类似于正弦曲线的非线性特性。此外,讨论了厚壁矩形中空截面冷弯型钢的成型过程和截面几何尺寸对残余应力的大小和分布的影响。最后,针对厚壁矩形中空截面冷弯型钢两种不同成型过程,分别给出相应的残余应力分布情况。  相似文献   

8.
为研究不锈钢轴心受压圆管的局部稳定承载性能,对9根奥氏体型不锈钢圆管短柱、7根双相型不锈钢圆管短柱以及作为对比的3根Q355圆钢管短柱进行轴心加载试验,得到了不锈钢轴压短柱的破坏模式和局部稳定承载力。研究发现短柱均发生局部失稳破坏,径厚比是影响轴心受压短柱承载力的重要因素。将局部稳定承载力试验结果与欧洲不锈钢结构设计规范EN 1993-1-4、美国冷成型钢结构设计规范AISI S100-2016、美国钢结构建筑规范ANSI/AISC 360、美国不锈钢建筑结构规范ANSI/AISC 370-21中的设计方法进行对比,结果表明:对于径厚比较小的不锈钢圆管短柱,四种规范的预测承载力较为保守;对于部分径厚比较大的不锈钢圆管短柱,规范预测承载力偏于危险。  相似文献   

9.
为研究不锈钢箱形截面轴心受压构件的整体稳定性,采用ANSYS软件对奥氏体和双相体两种不锈钢箱形截面轴心受压构件的整体稳定性进行了数值模拟,模拟中考虑了材料的非线性本构模型、构件的初始几何缺陷、残余应力的影响。重点通过不锈钢箱形截面构件在轴压作用下的荷载-位移曲线、截面应变发展情况及极限承载力对其整体稳定性能进行阐述。通过对比有限元模拟值、试验值以及根据规范计算的承载力,认为采用ANSYS软件能对不锈钢箱形截面轴心受压构件进行准确地模拟,残余应力对箱形截面的极限承载力影响较小,《钢结构设计规范》(GB 50017—2003)不适用于不锈钢整体稳定性设计。  相似文献   

10.
为研究激光焊接奥氏体不锈钢工字形截面轴心受压中长柱的承载性能,对10根激光焊接不锈钢工字形薄柔截面中长柱进行轴心受压试验研究,结果表明,中长柱的破坏模式均为板件局部屈曲与构件整体弯曲屈曲的相关失稳。同时,基于残余应力试验,验证了已有激光焊接不锈钢工字形截面的残余应力分布模型。基于试验结果验证了有限元模型,对激光焊接不锈钢工字形截面轴心受压中长柱开展参数分析,研究了几何初始缺陷和残余应力对中长柱稳定承载力的影响,结果表明,残余应力是影响中长柱稳定承载力的主要因素。结合试验和有限元计算结果,对CECS 410:2015《不锈钢结构技术规程》中轴心受压构件稳定承载力设计公式的适用性进行评估,并考虑残余应力的影响修正了轴心受压构件整体稳定设计公式的计算系数。采用修正后计算系数的规范公式能准确计算激光焊接不锈钢工字形截面轴心受压构件的稳定承载力。  相似文献   

11.
This paper describes a test program on cold-formed lean duplex stainless steel columns compressed between pinned ends. Two square hollow sections and four rectangular hollow sections were tested at different column lengths. The material properties of the test specimens were obtained from tensile coupon tests and stub column tests. The test specimens were cold-rolled from flat strips of lean duplex stainless steel (EN1.4162). The column specimens were concentrically loaded between pinned ends. The ultimate loads and the failure modes of each column are presented. The American, Australian/New Zealand and European specifications for stainless steel structures are assessed by comparing the column test strengths and available data in the literatures with the design strengths. It should be noted that these specifications do not cover the material of lean duplex stainless steel. A reliability analysis was carried out to assess the current design rules of stainless steel for lean duplex material. Generally, the specifications are able to predict the strengths of the tested columns. The design approach of using full cross-section area and material properties obtained by stub column tests for all classes of sections including slender sections was recommended. This recommended design approach does not require section classification and calculation of effective area, and provides a more accurate and less scattered prediction than those using the current design rules.  相似文献   

12.
This paper describes an accurate finite element model for the structural performance of cold-formed high strength stainless steel columns. The finite element analysis was conducted on duplex stainless steel columns having square and rectangular hollow sections. The columns were compressed between fixed ends at different column lengths. The effects of initial local and overall geometric imperfections have been taken into consideration in the finite element model. The material nonlinearity of the flat and corner portions of the high strength stainless steel sections were carefully incorporated in the model. The column strengths and failure modes as well as the load-shortening curves of the columns were obtained using the finite element model. Furthermore, the effect of residual stresses in the columns was studied. The nonlinear finite element model was verified against experimental results. An extensive parametric study was carried out using the verified finite element model to study the effects of cross-section geometries on the strength and behaviour of cold-formed high strength stainless steel columns. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The results of the parametric study showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally conservative for cold-formed high strength stainless steel square and rectangular hollow section columns, but unconservative for some of the short columns.  相似文献   

13.
The structural performance of cold-formed lean duplex stainless steel columns was investigated. A wide range of finite element analysis on square and rectangular hollow sections and other available data, with a total number of 259 specimens, were considered. An accurate finite element model has been created to simulate the pin-ended cold-formed lean duplex stainless steel columns. Extensive parametric study was carried out using the validated finite element model. The column strengths predicted from the parametric study together with the available data are compared with the design strengths calculated from various existing design rules for cold-formed stainless steel structures. It is shown that the existing design rules, except for the ASCE Specification as well as the stub column and full area approach, are conservative. Modifications are proposed for the AS/NZS Standard, EC3 Code, and direct strength method. Reliability analysis was performed to assess the existing and modified design rules. It is also shown that the modified design rules are able to provide a more accurate and reliable predictions for lean duplex stainless steel columns. In this study, it is suggested that the modified design rules in the AS/NZS Standard and the modified direct strength method to be used in designing cold-formed lean duplex stainless steel columns.  相似文献   

14.
This paper investigates the buckling behaviour of cold-formed high strength stainless steel stiffened and unstiffened slender square and rectangular hollow section columns. The high strength duplex material is austenitic-ferritic stainless steel approximately equivalent to EN 1.4462 and UNS S31803. The columns were compressed between fixed ends at different column lengths. A nonlinear finite element model has been developed to investigate the behaviour of stiffened slender square and rectangular hollow section columns. The column strengths, load-shortening curves as well as failure modes were predicted for the stiffened and unstiffened slender hollow section columns. An extensive parametric study was conducted to study the effects of cross-section geometries on the strength and behaviour of the stiffened and unstiffened columns. The investigation has shown that the high strength stainless steel stiffened slender hollow section columns offer a considerable increase in the column strength over that of the unstiffened slender hollow section columns. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the three specifications are generally conservative for the cold-formed stainless steel unstiffened slender square and rectangular hollow section columns, but slightly unconservative for the stiffened slender square and rectangular hollow section columns.  相似文献   

15.
Ben Young  Wing-Man Lui 《Thin》2006,44(2):224-234
The paper describes a test program on cold-formed high strength stainless steel compression members. The duplex stainless steel having the yield stress and tensile strength up to 750 and 850 MPa, respectively, was investigated. The material properties of the test specimens were obtained from tensile coupon and stub column tests. The test specimens were cold-rolled into square and rectangular hollow sections. The specimens were compressed between fixed ends at different column lengths. The initial overall geometric imperfections of the column specimens were measured. The strength and behaviour of cold-formed high strength stainless steel columns were investigated. The test strengths were compared with the design strengths predicted using the American, Australian/New Zealand and European specifications for cold-formed stainless steel structures. Generally, it is shown that the design strengths predicted by the three specifications are conservative for the cold-formed high strength stainless steel columns. In addition, reliability analysis was performed to evaluate the current design rules.  相似文献   

16.
This paper describes a test program on cold-formed lean duplex stainless steel members in combined compression and minor axis bending. The test specimens were cold-rolled from flat strips of lean duplex stainless steel grade EN 1.4162. In this study, square and rectangular hollow sections were compressed at different eccentricities, in order to obtain a beam-column interaction curve for each series of tests. Initial overall geometric imperfections of the members were measured prior to testing. The ultimate loads and the failure modes of each specimen were obtained. The observed failure modes include local buckling, flexural buckling and interaction of local and flexural buckling. The test strengths obtained from this study and other available data were compared with the design strengths predicted by the American Specification, Australian/New Zealand Standard and European Code for stainless steel structures. It should be noted that these specifications do not cover the material of lean duplex stainless steel. Therefore, the suitability of the beam-column design rules in these specifications for lean duplex stainless steel is assessed in this study. Generally, these specifications are capable of predicting the beam-column strengths of the lean duplex stainless steel test specimens, and the design rules in the specifications are considered to be reliable. It is observed that the European Code generally provides quite conservative predictions for the beam-column specimens compared to the American Specification and Australian/New Zealand Standard predictions.  相似文献   

17.
Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members is presented in this paper. The test specimens were cold-rolled from flat plates of lean duplex stainless steel with the nominal 0.2% proof stress of 450 MPa. Specimens of square and rectangular hollow sections subjected to both major and minor axes bending were tested. A finite element model has been created and verified against the test results using the material properties obtained from coupon tests. It is shown that the model can accurately predict the behaviour of lean duplex stainless steel flexural members. An extensive parametric study was carried out using the verified finite element model. The test and numerical results as well as the available data on lean duplex beams are compared with design strengths predicted by various existing design rules, such as the American Specification, Australian/New Zealand Standard, European Code and direct strength method for cold-formed stainless steel. Reliability analysis was performed to evaluate the reliability of the design rules. It is shown that these current design rules provide conservative predictions to the design strengths of lean duplex stainless steel flexural members. In this study, modified design rules on the American Specification, Australian/New Zealand Standard, European Code and direct strength method are proposed, which are shown to improve the accuracy of these design rules in a reliable manner.  相似文献   

18.
Stainless steels are employed in a wide range of structural applications. The austenitic grades, particularly EN 1.4301 and EN 1.4401, and their low-carbon variants EN 1.4307 and EN 1.4404, are the most commonly used within construction, and these typically contain around 8%–11% nickel. The nickel represents a large portion of the total material cost and thus high nickel prices and price volatility have a strong bearing on both the cost and price stability of stainless steel. While austenitic stainless steel remains the most favourable material choice in many applications, greater emphasis is now being placed on the development of alternative grades with lower nickel content. In this study, the material behaviour and compressive structural response of a lean duplex stainless steel (EN 1.4162), which contains approximately 1.5% nickel, are examined. A total of eight stub column tests and twelve long column tests on lean duplex stainless steel square (SHS) and rectangular hollow sections (RHS) are reported. Precise measurements of material and geometric properties of the test specimens were also made, including the assessment of local and global geometric imperfections. The experimental studies were supplemented by finite element analysis, and parametric studies were performed to generate results over a wider range of cross-sectional and member slenderness. Both the experimental and numerical results were used to assess the applicability of the Eurocode 3: Part 1-4 provisions regarding the Class 3 slenderness limit and effective width formula for internal elements in compression and the column buckling curve for hollow sections to lean duplex structural components. Comparisons between the structural performance of lean duplex stainless steel and that of other more commonly used stainless steel grades are also presented, showing lean duplex stainless steel to be an attractive choice for structural applications.  相似文献   

19.
Square and rectangular hollow sections are generally produced either by hot-rolling or cold-forming. Cross-sections of nominally similar geometries, but from the two different production routes may vary significantly in terms of their general material properties, geometric imperfections, residual stresses, corner geometry and material response and general structural behaviour and load-carrying capacity. In this paper, an experimental programme comprising tensile coupon tests on flat and corner material, measurements of geometric imperfections and residual stresses, stub column tests and simple and continuous beam tests is described. The results of the tests have been combined with other available test data on square and rectangular hollow sections and analysed. Enhancements in yield and ultimate strengths, beyond those quoted in the respective mill certificates, were observed in the corner regions of the cold-formed sections—these are caused by cold-working of the material during production, and predictive models have been proposed. Initial geometric imperfections were generally low in both the hot-rolled and cold-formed sections, with larger imperfections emerging towards the ends of the cold-formed members—these were attributed largely to the release of through thickness residual stresses, which were themselves quantified. The results of the stub column and simple bending tests were used to assess the current slenderness limits given in Eurocode 3, including the possible dependency on production route, whilst the results of the continuous beam tests were evaluated with reference to the assumptions typically made in plastic analysis and design. Current slenderness limits, assessed on the basis of bending tests, appear appropriate, though the Class 3 slenderness limit, assessed on the basis of compression tests, seems optimistic. Of the features investigated, strain hardening characteristics of the material were identified as being primarily responsible for the differences in structural behaviour between hot-rolled and cold-formed sections.  相似文献   

20.
G. Kiymaz   《Thin》2005,43(10):776
A series of tests consisting of various cross-section geometries were performed on structural stainless steel circular hollow sections (CHS) subjected to bending. The test program comprised a total of eight tests on CHS in two grades of stainless steel, namely 304 and Duplex 2205. For each grade four sections, each with a different slenderness, were tested, in order to cover a range of structural responses. Measurements of overall geometric imperfections and material properties were conducted. The test strengths are compared with the strengths predicted using the American, Australian and European specifications for cold-formed stainless steel structures. In the light of the test results and code recommendations, strength and cross-section classification criteria for stainless steel circular hollow section members in bending are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号