首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium borate (Li2B4O7) and sodium borate (Na2B4O7) mineralize spinel formation from stoichiometric MgO and Al2O3 between 1000° and 1100°C. Mineralization with both compounds is shown to be mediated by B-containing liquids which form glass on cooling. However, the liquid compositions depend on the type of mineralizer and temperature, suggesting that templated grain growth or dissolution–precipitation mechanisms are operating, one dominating over the other under certain conditions. Na2B4O7-mineralized compositions show predominantly templated grain growth at 1000°C, which changes to dissolution–precipitation at 1100°C, whereas Li2B4O7-mineralized compositions show dissolution–precipitation from 1000°C. Li2B4O7 is a stronger mineralizer as spinel formation is complete with 3 wt% Li2B4O7 at 1000°C and with ≥1.5 wt% addition at 1100°C, whereas Na2B4O7-mineralized compositions are found to retain some unreacted corundum even at 1100°C.  相似文献   

2.
The thermal stability of Al3BC3 powder was analyzed. Nearly X-ray-pure Al3BC3 powder was obtained through the calcination of the aluminum, B4C, and carbon mixture at 1800°C in Ar. In contrast to the former investigations, which reported the melting of so called "Al8B4C7" at 1800°C, Al3BC3 did not melt up to 2100°C. Instead, it decomposed by the vaporization of aluminum. The decomposition occurred distinctly at 1400° and 1900°C in flowing Ar and a sealed carbon crucible, respectively. The results indicated that the decomposition temperature depended on the partial pressure of aluminum vapour in the atmosphere.  相似文献   

3.
Single-crystal and polycrystalline films of Mg-Al2O4 and MgFe2O4 were formed by two methods on cleavage surfaces of MgO single crystals. In one procedure, aluminum was deposited on MgO by vacuum evaporation. Subsequent heating in air at about 510°C formed a polycrystalline γ-Al2O8 film. Above 540°C, the γ-Al2O, and MgO reacted to form a single-crystal MgAl2O4 film with {001} MgAl2O4‖{001} MgO. Above 590°C, an additional layer of MgAl2O4, which is polycrystalline, formed between the γ-Al2O3 and the single-crystal spinel. Polycrystalline Mg-Al2O4 formed only when diffusion of Mg2+ ions proceeded into the polycrystalline γ-Al2O3 region. Corresponding results were obtained for Mg-Fe2O4. MgAl2O4 films were also formed on cleaved MgO single-crystal substrates by direct evaporation, using an Al2O3 crucible as a source. Very slow deposition rates were used with source temperatures of ∼1350°C and substrate temperatures of ∼800°C. Departures from single-crystal character in the films may arise through temperature gradients in the substrate.  相似文献   

4.
Phase equilibria in the system MgO-B2O3 were investigated using DTA and quenching techniques. The system contains 4 invariant points. The compounds MgO·2B2O3 and 2MgO·B2O3 melt incongruently at 995° and 1312°C, respectively, whereas 3MgO·B2O3 melts congruently at 1410°C. A eutectic occurs at 1333°C and 71% MgO.  相似文献   

5.
Preparation and Characterization of Aluminum Borate   总被引:2,自引:0,他引:2  
Aluminum borate, 9Al2O3·2B2O3 or Al18B4O33, was synthesized by the reaction of stoichiometric amounts of α-Al2O3 and B2O3. The Al18B4O33 material was formed into a dense ceramic by pressureless sintering with CaO, MgO, or CaAl2B2O7 additives. The material was characterized by low bulk density, moderate coefficient of thermal expansion (3 × 10−6/°C to 5 × 10−6/°C), moderate strength (210 to 324 MPa), and low dielectric constant.  相似文献   

6.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

7.
Solid-state compatibility and melting relationships in the subsystem Al2O3—MgAl2O4—CaAl4O7 were studied by firing and quenching selected samples located in the isopletal section (CaO·MgO)—Al2O3. The samples then were examined using X-ray diffractomtery, optical microscopy, and scanning and transmission electron microscopies with wavelength- and energy-dispersive spectroscopies, respectively. The temperature, composition, and character of the ternary invariant points of the subsystem were established. The existence of two new ternary phases (Ca2Mg2Al28O46 and CaMg2Al16O27) was confirmed, and the composition, temperature, and peritectic character of their melting points were determined. The isothermal sections at 1650°, 1750°, and 1840°C of this subsystem were plotted, and the solid-solution ranges of CaAl4O7, CaAl12O19, MgAl2O4, Ca2Mg2Al28O46, and CaMg2Al16O27 were determined at various temperatures. The experimental data obtained in this investigation, those reported in Part I of this work, and those found in the literature were used to establish the projection of the liquidus surface of the ternary system Al2O3—MgO—CaO.  相似文献   

8.
Thermal reactions in 93% Al2O3-7% MgO and 95.8% Al2O3-4.2% MgO gels seeded with α-Al2O3, MgAl2O4, α-Fe2O3, and SiO2, sols were investigated by differential thermal analysis to determine the extent of nucleation catalysis of solid-state reactions. Seeding with α-Al2O3 lowered the α-Al2O3 crystallization temperature in these xerogels by 100° to 150°C. Spinel seeds have much less effect on the γ-α transition, and α-Fe2O3 and SiO2 seeds do not affect it significantly. Isostructural seeding of gels may therefore permit lower ceramic processing temperatures.  相似文献   

9.
The conditions necessary for synthesizing Al4SiC4 from mixtures of aluminum, silicon, and carbon and kaolin, aluminum, and carbon, as starting materials, were examined in the present study. The standard Gibbs energy of formation for the thermodynamic reaction SiC( s ) + Al4C3( s ) = Al4SiC4( s ) changed from positive to negative at 1106°C. SiC and Al4C3 formed as intermediate products when the mixture of aluminum, silicon, and carbon was heated in argon gas, and Al4SiC4 then formed by reaction of the SiC and Al4C3 at >1200°C. Al4C3, SiO2, Al2O3, SiC, and Al4O4C formed as intermediate products when the mixture of kaolin, aluminum, and carbon was heated under vacuum, and Al4SiC4 formed from a reaction of those intermediate products at >1600°C.  相似文献   

10.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

11.
The isoplethal sections CaAl2O4–MgO and CaAl4O7–MgO of the Al2O3–MgO–CaO ternary system have been experimentally established at 1 bar total pressure and air of normal humidity. The sections obtained provide new data and information that are in disagreement with thermodynamic evaluations and optimizations of the Al2O3–MgO–CaO ternary system published to date. These differences arise mainly from the inclusion, or exclusion, of the binary compound Ca12Al14O33, mayenite, as a stable phase in the reported studies of the system. The presence or absence of this compound within the system has an important impact on the solid state and melting relationships of the whole ternary system. The present study confirms the solid-state compatibility CaAl2O4–MgO and CaAl2O4–MgO–MgAl2O4 up to 1372°± 2°C, the peritectic melting point of the later mentioned subsystem.  相似文献   

12.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

13.
Diffusion of 51Cr isotope on MgO (100), Al2O3 (0001, and MgAl2O4 (111) surfaces was investigated by using the edgesource method. The surface diffusion parameter, αD,δ, where α is the segregation factor, D , the surface diffusion coefficient, and δ the thickness of the high-diffusivity layer, was determined for the temperature region 650° to 1250°C. For calculation of experimental results Whipple's solution was used. Arrhenius plots show a break at ∼1050°C for MgO and at ∼900°C for MgAl2O4. Above these temperatures vapor transport seems to be the overriding diffusion mechanism. Below these temperatures ionic transport predominates. Ionic transport is the predominant mechanism for surface diffusion of 51Cr on Al203 over the entire investigated temperature region. This can be explained by the weak bond between Cr-vapor species and Al203 surface. The apparent activation energies for ionic transport of 51Cr are 110 ± 12, 121 ± 12, and 119 ± 12 kJ/mol on MgO, Al2O3, and MgAl2O4 surfaces, respectively. They include enthalpy of motion and binding enthalpy and are 2.5 to 2.8 times smaller than the activation energies for volume diffusion. Investigations of surfaces by LEED, Auger, and SIMS indicated structural nonperiodicity and surface segregation of impurities.  相似文献   

14.
MgAl2O4 (MA) spinel powder was synthesized by heating an equimolar composition of MgO and Al2O3 in LiCl, KCl, or NaCl. The synthesis temperature can be decreased from >1300°C (required by the conventional solid–solid reaction process) to ∼1100°C in LiCl, or to ∼1150°C in KCl or NaCl. The molten salt synthesized MA powder was pseudomorphic and retained, to a large extent, the size and morphology of the original Al2O3 raw material, indicating that a "template formation mechanism" plays an important role in the synthesis process.  相似文献   

15.
The system B2O3-NaF-NaBF, has been studied by subjecting selected compositions to thermal treatment in the range 400° to 600°C. Weight losses, chemical analyses, ir, Raman, and X-ray diffraction techniques were used to define the composition of the crystalline phases and the structural units being formed in the system. The stoichiometry of the BF3 evolved from NaBF4-B2O3 mixtures indicated that a composition corresponding to Na2B3F5O3 was formed in mixtures containing up to 33.3 mol% B2O3. At higher boron oxide concentrations, Na2B3F5O3 was consumed, yielding 2NaF.3B2O3. The crystalline compounds Na3B3F6O3, 2NaF.3B2O3, and phase B (apparently NaF.B2O3) were formed in the system. The compound Na3B3F6O3 appeared as the stable oxygen-containing species in NaBF4-NaF mixtures of low oxide content. The main fluorine-containing structural units of the system are BF4, (–O)3BF, (–O)2BF2, (–O)2BF, whereas the main structure for binary NaF-B2O3 mixtures is (–O)3BF.  相似文献   

16.
Interdiffusion coefficients in single-crystal MgO were determined using an MgO-MgAl2O4 diffusion couple. For a concentration of 1 mol% Al2O3 in MgO, the interdiffusion coefficient can be expressed as D =2.0±0.2 exp (−76,000±3,000/ RT ) for the MgO-MgAl2O4 couple. This relation compares well with previous measurements in the MgO-Al2O3 system. The interdiffusion coefficients, which increased with the mol fraction of cation vacancies, were in the range of 10−8 to 10−10 cm2s−1 for the concentrations and temperatures studied. Diffusion was enhanced below 1640°C if powdered MgAl2O4 was used. Self-diffusion coefficients for Al3+ ions in MgO were calculated; Al3+ diffuses faster than Cr3+ in MgO.  相似文献   

17.
MgAl2O4 microwave dielectric ceramics were modified by Zn substitution for Mg, and their dielectric characteristics were evaluated, along with their structures. Dense (Mg1− x Zn x )Al2O4 ceramics were obtained by sintering at 1550°–1650°C in air for 3 h, and the (Mg1− x Zn x )Al2O4 solid solution was determined in the entire composition range. With Zn substitution for Mg, the dielectric constant ɛ of MgAl2O4 just varied from 7.90 to 8.56, while the Q × f value had significantly improved up to a maximal value of 106 000 GHz at x =1.0. Moreover, the τf of MgAl2O4 ceramics had declined from −73 to −63 ppm/°C.  相似文献   

18.
A morphous solids belonging to the systems Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3 were prepared by nitrate decomposition, introducing boron in the form of boric acid. Crystalline metastable solids with pseudotetragonal symmetry were obtained from thermal treatment at 850° to 900°C for the compositions Al6MexO(9+0.5 x ) ( x ≅ 1; Me = Na, K) and Al6- x B x O9 (1 x 3). The resultant solids were stable only within a difinite temperature range and transformed, with further treatment increases, into stable equilibrium phases. The structures of the metastable phases were examined by X-ray diffraction and Fourier transform infrared spectroscopy, and both analyses showed a mullite type of framework, inside of which the atomic coordinates were refined in the Pbam (no. 55) space group. The present results indicate that these silica-free mullite structures are stabilized by two different mechanisms: (1) interstitial occupation of bulky cations (Na+, K+) or (2) substitution of B for Al in some of the tetrahedral positions.  相似文献   

19.
In situ synthesis of bulk Al3BC3 was achieved via a reactive hot-pressing method using Al, B4C, and graphite powders at 1800°C for 2 h. The reaction path for synthesizing Al3BC3 was investigated. It was found that Al3BC3 formed via the reaction of C, B4C, and Al4C3 above 1180°C. Dense Al3BC3 was prepared with a little B4C and graphite remained. Microstructure observations revealed the plate-like morphology of Al3BC3 grains. Moreover, the mechanical properties of Al3BC3 were characterized (Vickers hardness of 11.1 GPa, bending strength of 185 MPa, fracture toughness of 2.3 MPa·m1/2, and Young's modulus of 163 GPa). Young's modulus decreased slowly with increasing temperature, and at 1600°C remained 79% of that at ambient temperature. These results show that Al3BC3 is a promising lightweight high temperature structural material.  相似文献   

20.
An isothermal section of the ternary system MgO–Al2O3-Cr2O3 was determined at 1700°± 15°C to delineate the stability field for spinel crystalline solutions (cs). Crystalline solutions were found between the pseudobinary joins MgAl2O4–Cr2O3 and MgCr2O4-Al2O3, and the binary join MgAl2O4-MgO. The first two crystalline solutions exhibit cation vacancy models while the latter can probably be designated as a cation interstitial model. Precipitation from spinel cs may proceed directly to an equilibrium phase, (Al1-xCrx)2O3, with the corundum structure or through a metastable phase of the probable composition Mg(Al1-xCr)26O40. The composition and temperature limits were defined where the precipitation occurs via metastable monoclinic phases. The coherency of the metastable monoclinic phase with the spinel cs matrix can be understood by considering volume changes with equivalent numbers of oxygens and known crystallographic orientation relations. Electron probe and metallographic microscope investigations showed no preferential grain boundary precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号