首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   

2.
Cold sintering process (CSP) is a new method to prepare ceramics under quite low temperature. In this work, two-step CSP under different pressures was employed to prepare (K0.5Na0.5)NbO3 (KNN) ceramics. The density of KNN green pellets can be raised by enhancing the pressure of second-step CSP. Energy-dispersive spectroscopy reveals the composition segregation of A-site cations in large grains. The dissolution rate of K+ in an aqueous medium is faster than Na+, and high pressure can accelerate K+ dissolution, resulting in more Na+ in some grains. Besides, the diffusion rate of Na+ in grains is better than K+, which promote the grains growth. Finally, the piezoelectric property is improved even with low ceramic density due to the larger grains, which possess the higher performance composition. This result demonstrates that the pressure and inhomogeneous dissolution of alkali metal ions among CSP play an important role in grain growth and piezoelectric enhancement.  相似文献   

3.
In this work, Li-modified KNN ceramic compositions ((K0.5Na0.5)1−xLix)NbO3 with x = 0.03, 0.04, 0.05, 0.06, 0.65 and 0.07 were prepared by a conventional solid-state mixed-oxide method. The structural phase formation and microstructure were characterized by X-ray diffraction technique (XRD) and scanning electron microscopy (SEM). It has been found that a morphotropic phase boundary (MPB) between orthorhombic phase and tetragonal phases should exist between compositions with Li contents of 6-6.5%. The Curie temperature (Tc) of the ceramics shifted to higher temperature with increasing Li content. The room temperature dielectric constant was also seen to be higher than the pure KNN ceramics. In addition, the ferroelectric properties were found to enhance at near MPB compositions. This study clearly showed that the addition of Li could improve the dielectric and ferroelectric properties in (K0.5Na0.5)NbO3 ceramics.  相似文献   

4.
In this study, the particular effects of A-site donor doping, such as crystal-structure change, the secondary-phase formation and the grain-size decrease, in a lead-free piezoceramic material K0.5Na0.5NbO3 (KNN) doped with Sr2+, were investigated. Extended X-ray absorption fine structure (EXAFS) analyses proved that Sr occupies the perovskite A-sublattice, and locally modifies the KNN monoclinic structure to cubic. Introducing Sr into the A-sublattice, as well as accounting for the charge-compensating A-site vacancies in the starting composition, causes increasing lattice disorder and microstrain, as determined from a Rietveld refinement of the synchrotron X-ray diffraction data. Above 2% Sr the system segregates the A-site vacancies in a secondary phase in order to release the chemical pressure, as revealed by Raman spectroscopy. All these effects result in an increasing number of low-angle grain boundaries that limit the grain growth and finally lead to a significant grain-size decrease.  相似文献   

5.
A novel strategy of enhancing the dielectric and energy storage properties of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) ceramics by introducing a K0.5Na0.5NbO3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT?BT?x?KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.  相似文献   

6.
Piezoelectric energy harvesting is the most widely investigated technology for renewable energy applications. In this work, (1-x)(Na0.5K0.5)NbO3-xLiSbO3 piezoelectric ceramics were prepared through conventional mixed oxide fabrication methods with different sintering temperatures. Although the (Na0.5K0.5)NbO3 piezoelectric material is representative among the lead-free ceramics, it is difficult to densify by typical sintering techniques owing to its easy evaporation properties of potassium (K+) and sodium ion (Na+). Hence, lithium (Li+) and antimony ion (Sb5+) were used for the partial substitution of (Na0.5K0.5)NbO3. With the optimized sintering temperature, Li+ and Sb5+ are expected to be crucial in increasing the density and enhance the piezoelectric and ferroelectric properties. In this study, the phase, microstructure, and dielectric and electrical properties of (1-x)(Na0.5K0.5)NbO3-xLiSbO3 ceramics depending on the sintering temperature is examined by employing X-ray diffraction, field emission scanning electron microscopy, impedance analyzer, and mechanical force system for energy harvesting.  相似文献   

7.
Lead-free (K0.5Na0.5)NbO3-based (KNN) piezoceramics featuring a polymorphic phase boundary (PPB) between the orthorhombic and tetragonal phases at room temperature are reported to possess high piezoelectric properties but with inferior cycling stability, while the ceramics with a single tetragonal phase show improved cycling stability but with lower piezoelectric coefficients. In this work, electric biasing in-situ transmission electron microscopy (TEM) study is conducted on two KNN-based compositions, which are respectively at and off PPB. Our observations reveal the distinctive domain responses in these two ceramics under cyclic fields. The higher domain wall density in the poled KNN at PPB contributes to the high piezoelectric properties. Upon cycling, however, a new microstructure feature, “domain intersection”, is directly observed in this PPB composition. In comparison, the off-PPB KNN ceramic develops large domains during poling, which experience much less extent of disruption during cycling. Our comparative study provides the basis for understanding the relation between phase composition and piezoelectric performance.  相似文献   

8.
A small quantity of Eu3+ ions were doped in the lead‐free ferroelectric K0.5Na0.5NbO3xLiNbO3 (KNN–xLN, 0 ≤ x ≤ 0.08) ceramics to investigate the NbO6 octahedral distortion induced by the increasing LN content. In addition, the phase structure, ferroelectric, and photoluminescence properties of K0.5Na0.5NbO3xLiNbO3:0.006Eu3+ (KNN–xLN:0.006Eu3+) lead‐free piezoelectric ceramics were characterized. All the X‐ray diffraction, Raman spectra, dielectric constant vs temperature measurements and the photoluminescence of Eu3+ ions demonstrated that the prepared ceramics undergo a polymorphic phase transition (PPT, from orthorhombic to tetragonal phase transformation) with the rising LN content, and the PPT region locates at 0.05 ≤ x ≤ 0.06. The ferroelectric properties, Raman intensity ratios and photoluminescence intensity ratios show similar variations with the increasing LN content, all with a maximum value achieved at the PPT region. We believe that the close relationship among the ferroelectric properties, Raman intensity ratios, and photoluminescence intensity ratios is caused by the NbO6 octahedral distortion. The photoluminescence of Eu3+ ion was discussed basing on the crystal‐symmetry principle and Judd‐Ofelt theory.  相似文献   

9.
In this paper, a simple, reproducible and cost-effective solid-state reaction sintering process is developed to fabricate (K0.5Na0.5)NbO3-xBaNi0.5Nb0.5O3-δ (KNN-xBNN) ceramics with a narrow bandgap and room-temperature ferromagnetism. Here, we report a systematic investigation of the influence of the BaNi0.5Nb0.5O3-δ (BNN) concentration on the properties of KNN-xBNN ceramics. All ceramics form orthorhombic perovskite structures with a space group Amm2 and a weak peak at the wavelength of 550 cm?1 that is characteristic of the pillow shoulder of the orthorhombic phase. KNN-xBNN ceramics with x between 0.02 and 0.08 have a narrow bandgap of about 2.5 eV—much smaller than the 3.5 eV of its parent (K0.5Na0.5)NbO3 (KNN) ceramic—which is attributed to Ni2+-oxygen vacancy combinations (Ni2+-VO) raising the valence electron energy level of the KNN ceramic. Furthermore, doping BNN into KNN ceramics can significantly convert the magnetism from diamagnetism to ferromagnetism and the component of x = 0.08 achieves both maximum saturation magnetisation intensity (14 memu/g) and minimum coercive magnetic field (80 Oe). Our findings provide a systematic insight into the bandgap tunability and ferromagnetism induction at room temperature in lead-free perovskite KNN-xBNN ceramics, as well as demonstrate their potential applications in perovskite solar cells and multiferroic devices.  相似文献   

10.
《Ceramics International》2020,46(8):11617-11621
Lead-free Na0.5K0.5NbO3 (KNN) piezoelectric ceramics is regarded as a potential candidate for PZT material, while high performance is difficult to be obtained due to its poor sinterability and non-stoichiometric component. In this work, oscillatory pressure-assisted hot pressing (OPAHP) is utilized to fabricate KNN ceramics with high density. The KNN ceramics sintered at 860 °C exhibits superior performance with piezoelectric parameter (d33) of 142 pC/N, electromechanical coupling factors (kp) of 0.41, and relative permittivity (εT33/ε0) of 472–620. Additionally, hardness and flexural strength are measured as 3.55 GPa and 99.13 MPa, respectively. This work indicates that OPAHP technique is effective for fabricating KNN piezoelectric ceramics with high performance.  相似文献   

11.
Through mixing the KMnO4 solution with K0.5Na0.5NbO3 (KNN) powders, cold sintering process (CSP) was employed to fabricate high-density Mn-doped KNN green pellets and ceramics. The microstructure, doping effect of Mn and electrical properties of these ceramics were studied in detail. Compared with conventional sintering (CS), the CSP supports the homogeneity of dopants and then promotes grain growth and ceramic densification; thus the Mn-doped KNN ceramics prepared by CSP show the obviously higher density and larger grain size. Besides, the less alkalis volatilization and oxygen vacancies result in more Mn3+ but less Mn4+ in CSP ceramics compared to CS ones, which endows the pinning effect and good poling characteristics in CSP ceramics. All the previous results contribute to the high dielectric constant and remnant polarization in CSP ceramics, which support the enhanced piezoelectric coefficient and are much superior than Mn-doped KNN ceramics prepared by CS. This work reveals that CSP can be a new doping strategy to perform chemical modification of electrical properties in KNN ceramics.  相似文献   

12.
For enhancing the piezoelectric properties of ceramics (Bi0.5Na0.5)ZrO3 (BNZ) was used to partially substitute (K0.5Na0.5)NbO3 (KNN). The addition of BNZ changes the symmetry of KNN ceramics from orthorhombic to tetragonal, and finally to rhombohedral phase. A new phase boundary with both rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions near room temperature is identified for KNN–0.050BNZ ceramics, where optimum electrical properties were obtained: d33 = 360 pC/N, kp = 32.1%, εr = 1429, tanδ = 3.5%, and TC = 329°C. The results indicated a new method for designing high‐performance lead‐free piezoelectric materials.  相似文献   

13.
(1?x)Na0.47K0.47Li0.06NbO3 (NKLN)–xAgSbO3 lead-free piezoelectric ceramics were prepared using a reaction sintering method. The effects of AgSbO3 doping on the structural and electrical properties of NKLN ceramics sintered at 1000–1040 °C were studied. The dopant affected densification, phase content, sintering temperature, microstructure and electrical properties. Variations in the relative intensity of X-ray diffraction peaks were consistent with Ag+ and Sb5+ ions substituting on the perovskite lattice to produce a change in the proportions of co-existing tetragonal and orthorhombic phases. Grain growth during secondary re-crystallization was also affected. The temperature of the orthorhombic–tetragonal (O–T) phase transition and the Curie temperature (TC) decreased as a result of AgSbO3 modifications. The dielectric and piezoelectric properties are enhanced for the composition near the orthorhombic–tetragonal polymorphotropic phase boundary. The 0.92Na0.47K0.47Li0.06NbO3–0.08AgSbO3 ceramics exhibited optimum electrical properties (d33=252 pC/N, εr=1450, tan δ=0.02, and TC=280 °C). These results reveal that (1?x)Na0.47K0.47Li0.06NbO3xAgSbO3 ceramics are promising materials for lead-free piezoelectric application.  相似文献   

14.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

15.
0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3–0.04CaZrO3 (0.96KNLNS–0.04CZ) lead‐free piezoelectric ceramics have been prepared by a new ceramics sintering progress—three‐step sintering method, via adjusting every step sintering temperature and holding time to improve piezoelectric properties. The result shows that the phase structure of the ceramics was changed from single phase to two phase coexisted by three‐step sintering, meanwhile, orthorhombic–tetragonal phase transition temperature was modified to around zero degree. Remarkably, piezoelectric properties has been obtained in 0.96KNLNS‐0.04CZ ceramics, which piezoelectric parameter is d33 =420 pC/N, Kp =0.485.  相似文献   

16.
《Ceramics International》2016,42(7):8051-8057
0.948(K0.5Na0.5)NbO3–0.052LiSbO3xMgTiO3 (x=0, 0.005 and 0.010) (abbreviated as KNLNS–xMT) lead-free piezoelectric ceramics were prepared by normal sintering. The effect of MT addition on KNLNS ceramics was investigated through dielectric, ferroelectric and electric field-induced strain characterizations. The grain size decreased slightly after the addition of MT, and more uniform grains were obtained. Impedance measurements made over a wide range of temperatures (425–525 °C) showed the presence of both bulk and grain boundary effects in the materials. The activation energies Ea were 0.483 and 0.507 eV for KNLNS and KNLNS–0.005MT ceramics respectively, indicating that the conduction process was due to oxygen vacancies in the higher temperature region. The Pr and unipolar strain of the MT modified ceramics exhibited lower temperature sensibility than KNLNS ceramics in the temperature range 30–120 °C. Meanwhile, the MT doped samples showed less degradation in both switchable polarization and unipolar strain after 106 switching cycles than those of KNLNS. It is expected that the KNLNS–xMT ceramics is promising candidate for lead-free piezoceramics and could be used in practical applications.  相似文献   

17.
In this paper, cold sintering was served as a forming method to assist the conventional sintering, which is so-called cold sintering assisted sintering (CSAS) method. Lead-free K0.5Na0.5NbO3 piezoelectric ceramics were prepared by the CSAS method, and the effects of the different procedures on the sintering behaviors and electrical properties of KNN ceramics were studied. Compared with conventional sintering (CS), cold sintering process can induce potassium-rich phase on the KNN particle surface, and remarkably increase both the green and sintering density of KNN ceramics. Meanwhile, the potassium-rich phase would transform to K4Nb6O17 second phase on the grain surface, and subsequently suppress the volatilization of potassium element. The sinterability and electrical properties were greatly improved, and KNN piezoelectric ceramics with high performance can be manufactured in a wide sintering temperature range (1055 °C–1145 °C), which proves that CSAS has the potential to be an excellent sintering technique for producing KNN based ceramics.  相似文献   

18.
With extensive first‐principles calculations, we investigated the geometric structure, phase transition, and electronic properties of orthorhombic, monoclinic, and tetragonal K1?xNaxNbO3 (KNN) as functions of the Na content. We found that KNN undergoes an orthorhombic‐to‐monoclinic‐to‐orthorhombic phase transition when the Na content is gradually increased. We also found that the polarization vector of the monoclinic phase can be rotated more easily than those of the orthorhombic and tetragonal phases, giving rise to an enhanced piezoelectric response of the monoclinic KNN. Furthermore, our calculations provide an interpretation for the experimentally observed unusual broad peak of the KNN piezoelectric parameters.  相似文献   

19.
This study investigated the phase transition behavior and electrical properties of (K0.5Na0.5)(Nb1-xZrx)O3 (KNN?100xZ) and (K0.5Na0.5)NbO3yBaZrO3 (KNN–100yBZ) lead–free piezoelectric ceramics. The phase transitions in crystal structures were compared in KNN ceramics between single Zr4+ doping and Ba2+Zr4+ co?doping. Piezoelectric properties such as the piezoelectric constant (d33) and electromechanical coupling factor (kp) are optimized for KNN?6BZ ceramics and were clarified via the polymorphic phase transition from the orthorhombic to pseudocubic phase. The fitted degree of diffuseness (γ) for a phase transition from the modified Curie–Weiss law indicated that KNN ceramics as ferroelectrics are gradually transformed through BaZrO3 modification. Accordingly, the enhanced strain properties at y = 0.08 consist of coexisting ferroelectric domains and polar nanoregions that are supported by ferroelectric–to–relaxor crossover in KNN?100BZ ceramics.  相似文献   

20.
《Ceramics International》2015,41(7):8377-8381
Lead-free Lix(K0.48Na0.52)1−xNbO3 (KNN–xLi) ceramics were successfully prepared by the tape casting method and solid-state reaction. The effects of Li content on phase transition, microstructure and electrical properties were investigated. XRD results show strong preferred orientation, indicating the presence of textured structure in the samples. With increasing Li content, the Currie Temperature shifts to higher temperature while the phase transition temperature between orthorhombic and tetragonal phases shifts to lower temperature. The sample with x=0.05 is determined to contain two perovskite phases with orthorhombic and tetragonal structures at room temperature, respectively, and exhibits the maximum values of piezoelectric coefficient of 286 pC/N and planar electromechanical coupling factor of 0.45.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号