首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
一次主震过后通常伴有多次余震发生,由于主、余震间隔时间较短,主震损伤结构通常要遭受进一步的余震作用.为了评估震损结构的余震安全,提出了一种损伤状态相关的余震易损性分析方法.该方法采用有限次整体调幅的主余震序列作为输入,利用Park-Ang指数描述结构在主余震序列作用下的主震损伤和累积损伤,基于logistic回归方法生...  相似文献   

2.
一次强震过后通常伴有多次余震发生。由于主震和其后续余震之间的间隔时间较短,使得主震损伤结构未能得到及时修复而进一步遭受余震作用,产生“二次损伤”。为此,以一栋5层按我国相关设计规范设计的钢筋混凝土框架结构为研究对象,对主余震序列对结构造成累积损伤及余震对结构造成的增量损伤进行了研究。选取75条真实主震及其余震记录构成序列型地震动输入。同时,采用真实主余震序列中的主震记录,分别采用重复法和随机法两种人工余震构造方法,构造两组人工主余震序列作为地震输入。采用改进的Park-Ang损伤指数作为结构损伤指标,对结构在主震及其在真实和人工主余震序列作用的损伤进行计算,并对余震产生的结构增量损伤进行评估。进一步以峰值加速度、谱加速度、Arias强度作为主震和余震强度参数,研究了余震与主震强度比与余震增量损伤之间的相互关系。分析结果表明:基于随机法的人工主余震序列会对结构造成最显著的增量损伤;采用余震和主震强度比可以较好地预测余震增量损伤的显著性。  相似文献   

3.
One of the important measures of post-earthquake functionality of bridges after a major earthquake is residual displacement. In many recent major earthquakes, large residual displacements resulted in demolition of bridge piers due to the loss of functionality. Replacing the conventional longitudinal steel reinforcement in the plastic hinge regions of bridge piers with super-elastic shape memory alloy (SMA) could significantly reduce residual deformations. In this study, numerical investigations on the performance of SMA-reinforced concrete (RC) bridge bents to monotonic and seismic loadings are presented. Incremental dynamic analyses are conducted to compare the response of SMA RC bents with steel RC bents considering the peak and the residual deformations after seismic events. Numerical study on multiple prototype bridge bents with single and multiple piers reinforced with super-elastic SMA or conventional steel bars in plastic hinge regions is conducted. Effects of replacement of the steel rebar by SMA rebar on the performance of the bridge bents are studied. This paper presents results of the parametrical analyses on the effects of various design and geometric parameters, such as the number and geometry of piers and reinforcement ratio of the RC SMA bridge bents on its performance.  相似文献   

4.
One of the most popular damage indexes for reinforced concrete (RC) members is Park–Ang damage index model. This model has been established on the basis of experimental results of RC beams and columns with different modes of damage. It has considerable uncertainty on the basis of its authors' remarks. In this study, precision of Park–Ang model for RC columns is improved by using some experimental results from Pacific Earthquake Engineering Research information bank. In proposed model, it focused on RC columns with specific sections and collapse modes. Finally, in order to define damage index more exactly in concrete columns under seismic loadings, capability of IDARC‐2D computer program has been improved by this proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This study presents a risk-based decision support framework for seismic retrofit of building structures where the decision criterion is to minimize the sum of the cost required for the rehabilitation and the expected seismic loss over a specified time period. Probabilistic seismic hazard model (PSHM) and probabilistic seismic demand model (PSDM) are utilized for manipulation of the uncertainty propagation from the seismic hazard to the structural damage. A mathematical formula is then developed for probabilistic estimation of the seismic damage and losses over a specified time period. The analysis procedure is developed such that the effect of the different configurations of the decision inputs can be promptly observed. The proposed procedure is demonstrated by performing a decision analysis for a hypothetical RC building structure for determination of the optimal level of seismic rehabilitation using steel bracings.  相似文献   

6.
In the estimation of the losses caused by an earthquake for a reinforced concrete (RC) building, the effect of corrosion of the reinforcing steel incurred by environmental conditions, e.g. carbonation and chloride ions, is seldom mentioned because of the corrosion with uncertainty and time dependence. However, because the structural capacity of a corroded RC building declines over time, one must apply an appropriate method that estimates the structural capacity of an RC building in a corrosive environment. Therefore, this work integrated degradation factors into the structural properties of a corroded RC building. Additionally, by considering life-cycle earthquake events, lifetime losses resulting from earthquakes and corrosion can be derived. This work can help both owners and investors to identify lifetime losses of RC buildings due to seismic structural damage, including the corrosion effect, within a specified service life. Although the case study only addresses a selection of the most appropriate concrete cover depth for an RC building corroded by chloride ions, the proposed procedure can be utilised when making decisions about whether to prevent building deterioration based on economic considerations.  相似文献   

7.
The main purpose of this work is to propose an estimating procedure that building designers can use to choose methods of suppressing chloride ingress, i.e. concrete-cover thickness, concrete-surface coating and concrete mix (water–cement ratio), for reinforced concrete (RC) buildings with a specified durability performance. At first, the authors build equations for estimating airborne chloride concentrations in coastal regions in Taiwan by regressing measurement data. Then, an analytical model incorporates these data into a deterioration model for chloride-induced corrosion and to estimate corrosion of reinforcing steel bars. This work also presents a novel computational procedure to calculate the risk of corrosion for reinforcing steel bars embedded in concrete, while considering uncertainties in environmental conditions, material properties and model error. Using risk curves of corrosion, building designers can set an allowable durable reliability to determine the minimal required concrete-cover thickness for RC members. Finally, this work adopts coastal regions in Taiwan as an example to determine the minimum required concrete-cover thicknesses. Furthermore, reliability-based methods of suppressing chloride ingress for RC buildings are also suggested for each division zone of Taiwan.  相似文献   

8.
Strong aftershocks have the potential to further aggravate the damage state of structures, and much less attention has been given to the seismic vulnerability of high‐rise buildings than that of low‐ to medium‐rise buildings. This study assesses the seismic vulnerability of a 32‐storey frame–core tube building by performing the incremental dynamic analysis on the material‐based three‐dimensional numerical model. A storey damage model based on the material damage is developed using the weighted average method. Eighteen recorded mainshock–aftershock sequences, whose mainshock records match the target spectrum, are selected. The results indicate that the developed stroey damage model can effectively reflect the additional damage induced by aftershocks. Strong aftershocks have high potential to change the location of weak storeys. Notably, shifts of weak storeys are observed in more than 30% of aftershocks with relative spectral acceleration of 0.8. As the mainshock‐induced damage state becomes more severe, the mainshock‐damaged building becomes increasingly fragile to the aftershock excitation and more sensitive to aftershock intensities. The probability of exceeding severe damage state increases from 35.3% to 62.1% due to the effects of strong aftershocks. The results in this study can provide supports to the seismic resilience assessment of this high‐rise building.  相似文献   

9.
This article presents a novel simplified method for assessing seismic damage to low-rise reinforced concrete (RC) buildings by using the hazard curve of response spectral acceleration. Moreover, the occurrence of an earthquake is assumed to follow a Poisson process when analysing the occurrence probability of a specified damage state in the remaining service life and expected losses induced by seismic damage. Then, a novel procedure for estimating lifetime costs and benefits of seismic retrofitting is proposed. In the case study, 16 practical design projects for seismic retrofitting of RC school buildings in Taipei are subjected to lifetime cost-benefit analysis using the proposed method. It can be found that not only lifetime cost-benefit ratios but also the financial return period for each dollar invested seismic retrofitting can be identified conveniently. Additionally, they are useful information for making decisions about whether to retrofit a building or not.  相似文献   

10.
方志  王飞  殷新锋  王诚 《工业建筑》2012,42(3):12-19
以配箍率和水平荷载加载角度为试验参数,通过对6个钢筋混凝土箱型墩试件施加常轴力以及水平反复荷载,研究水平荷载作用方向和配箍率对钢筋混凝土箱型墩抗震性能的影响。分析各试件的滞回曲线、骨架曲线、荷载退化曲线和刚度退化曲线等方面的特征,并得出了各试件的位移延性系数和耗能系数。结果表明:钢筋混凝土箱型墩具有较好的抗震性能,水平荷载加载方向角和配箍率是影响箱型墩抗震性能的重要因素。  相似文献   

11.
为研究钢筋混凝土墩柱损伤模型对实际损伤状态预测的有效性,利用72个钢筋混凝土墩柱的低周反复试验结果对6个有代表性的损伤模型进行了计算分析,利用定性和定量相结合的方法探究了基于损伤状态的经验性损伤程度辨识方法对损伤程度判别的影响。考虑钢筋混凝土墩柱的最大变形和累积耗能,提出了双参数损伤模型,并给出了理想破坏模式下模型参数的确定方法。基于统计分析方法,确定了钢筋混凝土墩柱的特征损伤状态和损伤程度区间。结果表明:在加载中前期,所提出的双参数损伤模型的损伤指数增长趋势与Park-Ang损伤模型基本一致;在加载后期,损伤指数快速增长,具有一定的合理性,对特征损伤状态的区分度相对较高;各损伤模型在钢筋混凝土墩柱的混凝土保护层轻微压碎、混凝土显著剥落、纵筋屈曲3种损伤状态下变异系数均较大,在极限状态下损伤指数变异系数有所下降,各损伤模型对特征损伤状态的辨识度各具优势;微小损伤状态与中等损伤的判断还需要一定的经验累积。  相似文献   

12.
Considering residual service life, this paper presents a collapse safety margin-oriented seismic retrofit strategy for corroded reinforced concrete (RC) frames using fibre reinforced plastics (FRP). With the assumed uniform corrosion model, corrosion-induced initial damage combined with subsequent earthquake-induced damage is identified by the multi-mode-based global damage model developed previously. The collapse-level earthquake intensity determined by incremental dynamic analyses (IDA) with the damage model and the maximum considered earthquake (MCE)-level intensity considering residual service life are combined to generate the time-variant collapse safety margin assessment of corroded RC structures. Based on this assessment, the collapse safety margin-oriented FRP seismic retrofit strategy is proposed and demonstrated on a 4-storey frame. The damage model originally developed for earthquake scenarios has also exhibited its rationality for characterising corrosion-induced initial damage and its influence on coupled damage development with subsequent earthquake excitation. Seismic retrofitting with FRP composites should consider the effects of the corrosion development stage, target collapse safety margin and residual service life. FRP retrofits can cause decreases in the MCE-level collapse probability and increases in the collapse resistance of corroded RC structures. Retrofitting carried out at different times achieves different efficiencies and different time-variant collapse safety margins within the residual service life.  相似文献   

13.
Most engineering systems used in maintenance strategies must consider deterioration and seismic structural damage. To identify the effects of deterioration and earthquakes simultaneously on structural performance, this study applies an integral simulation method. Compared with that of previous studies, the feature of the proposed method is its analysis of the time-dependent structural capacity of a deteriorating reinforced concrete (RC) building and the simulation of life-cycle earthquake events within a specified service period, while considering cumulative damage induced by deterioration and earthquakes. In addition, the proposed assessment method is applied to derive the reliability-based service life of a deteriorating RC building located in a region with high seismic hazard. Briefly, for deteriorating RC buildings, the proposed reliability-based service life assessment method provides useful information related to maintenance based on both serviceability and safety.  相似文献   

14.
为研究混凝土桥梁结构在服役期内由于环境氯离子侵蚀效应引起钢筋、混凝土锈蚀退化等导致结构抗震性能退化的规律,以某多跨钢筋混凝土连续梁桥为例,采用OpenSees软件建立非线性动力分析模型,根据已有研究成果并基于概率方法研究了墩柱截面主筋和箍筋锈蚀的开始时间和锈蚀率大小,进而建立了钢筋的直径及屈服强度退化模型;针对考虑纵筋锈蚀、考虑箍筋锈蚀、同时考虑纵筋和箍筋锈蚀3种情况,分别分析了材料退化对桥墩抗震性能的影响。结果表明:同等条件下箍筋锈蚀比纵筋锈蚀更早;随着时间的推移,氯离子侵蚀效应会导致桥墩抗震能力下降,结构的抗震需求明显增加;与以往只考虑纵筋锈蚀的情况相比,同时考虑箍筋和纵筋锈蚀时桥墩抗震性能退化更严重。  相似文献   

15.
As a special shell structure, silos are used in storing a wide range of multitudinous granular materials. However, seldom have researchers assessed seismic vulnerability of the reinforced concrete (RC) silo. This paper aims at studying the seismic vulnerability assessment of a silo, which is located in Zhoushan, China. Prior to assessing the seismic vulnerability of the selected RC silo, the validation of the hypoplastic constitutive model, which is used to simulate granular materials, is studied. After discussing the validation of the hypoplastic theory, the numerical model considering granular material‐structure interaction is developed by means of the ABAQUS software. And the numerical simulation results are compared with the experimental data obtained from a shaking table test discussed in order to confirm the validation of the numerical model, which is used to study the seismic vulnerability of the RC silo. Then the seismic fragility assessment of the selected RC silo is performed using the incremental dynamic analysis. The analytical results showed that the hypoplastic theory can be used to simulate the stored materials in the silo considering the collapse property before entering plastic state of granular materials. For the design basic acceleration, the fragility curves of the selected RC silo showed that the probability of exceeding the no or light damage state was about 2.12%. For the maximum considered earthquake, the exceeding probability of no or slight and the moderate damage states was 17.63% and 1.31%, respectively. With respect of the severe and total damage state, the exceeding probabilities were almost zero. Therefore, the selected RC silo structure has enough safety stock to withstand strong earthquakes in the future. Finally, a general design procedure considering seismic fragility assessment was presented in order to provide references for other structure design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
竖向地震作用对高耸烟囱结构动力响应有不可忽略的影响。选用240m高的某钢筋混凝土烟囱作为研究对象,考虑结构损伤,通过有限元软件ABAQUS,采用复合壳单元建立相应的非线性有限元分析模型。为考虑地震动的不确定性,根据谱相容性原则,选择20条合理地震动记录,进行增量动力分析。输入的地震动分别为一维、二维、三维。分别以材料应变和地面峰值加速度作为结构地震需求参数和地震动强度参数,结合增量动力分析获得的结构地震响应,采用能力需求比模型的曲线拟合法计算易损性曲线。通过钢筋和混凝土的材料应变定义四个损伤状态限值,最终得到在不同维数地震动输入时高耸钢筋混凝土烟囱结构的地震易损性曲线和倒塌概率曲线。研究结果表明,考虑多维地震作用比只考虑一维地震作用时高耸烟囱的结构易损性和倒塌概率增大。  相似文献   

17.
18.
钢筋混凝土桥墩基于位移的抗震设计方法   总被引:11,自引:0,他引:11  
通过改进能力谱法,给出了一个可以实现“小震不坏、中震可修和大震不倒”多级性能目标的钢筋混凝土桥墩直接基于位移的抗震设计方法。首先以钢筋和混凝土的应变幅值建立了钢筋混凝土桥墩不同破损极限状态的量化准则,并基于曲率延性系数和位移延性系数关系转化为墩顶位移的表述形式。再以屈服位移和位移延性系数作为设计参考变量,采用屈服谱加速度和屈服位移(Ay-Dy)格式的地震需求谱求解系统在不同风险水平地震作用下的反应。最后以能力设计原理保证桥墩截面的抗剪强度需求。通过一个具体设计算例说明了建议方法的可行性。  相似文献   

19.
The region around Taiwan is known for active seismicity, and a few studies have reported a high seismic hazard in this region, including a deterministic seismic hazard analysis (DSHA) study. Essentially, DSHA is to estimate earthquake ground motions considering the worst-case earthquake size and location, but without considering the seismic hazards from non-controlling sources. Understandably, when many non-controlling sources are present, the original DSHA framework could be insufficient. Therefore, using the extreme probability theory, this study introduces a new DSHA framework taking non-controlling seismic sources into account during DSHA calculations. The new method was applied to a seismic hazard assessment for Taiwan, showing that near the conjunctions of seismic source zones, the increase in seismic hazard could be substantial after considering a total of 19 non-controlling sources. More importantly, like other seismic hazard assessments for Taiwan, this study conveys the same alarming message that a high level of seismic hazard should be present around the region.  相似文献   

20.
Regression and neural network models have been developed to predict the cost and duration of projects for the reconstruction of schools which must be quickly rebuilt. Data for the school reconstruction projects in central Taiwan, which received the most serious damage from the Chi‐Chi Earthquake, were collected and analysed. The analytical results demonstrate that the floor area provides a good basis for estimating the cost and duration of school reconstruction projects, and suggest that the neural network model with back‐propagation learning technique is a feasible approach that yields better prediction results than the regression model for school reconstruction projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号