首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
陈锋 《中国能源》2013,(4):41-42
<正>煤层气是与天然气相媲美的优质高效清洁能源,可与天然气混输混用,与页岩气、水溶气等同被称为"非常规天然气"。我国煤层气2000m以内浅层地质储量为36.81万亿m3,居全球第三位。煤层气抽采开发利用既有利于煤矿安全治理,又有益于国家能源结构调整。1996年,经国家批准成立了中联煤层气有限责任公司,依法享有对煤层气勘探  相似文献   

2.
<正>煤层气(煤矿瓦斯)是优质清洁能源,全球埋深浅于2000m的煤层气资源约为240万亿m3,其中,我国的资源量约36.81万亿m3,居世界第三位。煤层气是常规天然气探明储量的2倍多,世界主要产煤国都十分重视开发煤层气。我国"十一五"规划中将煤层气列为重要的发展产业,并制定了一系列政策措施,强力推进煤层气的开发利用。  相似文献   

3.
《能源研究与信息》2006,22(1):57-57
我国煤层气(即瓦斯)资源十分丰富,是世界上继俄罗斯、加拿大之后的第三大储量国,占世界排名前12位国家资源总量的13%。根据最新一轮资源评估结果,我国埋深2000m以内的煤层气资源量达到31.46万亿m^3,相当于450亿t标准煤,或350亿t标准油,与陆上常规天然气资源量40万亿m^3相当。煤气层主要分布在华北地区,占资源量的60%,贵州煤层气资源量约为3.1万亿m^3占10%。瓦斯有望成为接替煤炭、石油和天然气等常规能源的新能源资源。  相似文献   

4.
在2012-11-15召开的"第十二届国际煤层气研讨会"上,权威专家认为,与页岩气相比,"十二"期间,煤层气产业发展更具现实意义。国家对煤层气抽采补贴有望从目前的0.2元/m3提高到0.6元/m3。煤层气是清洁的非常规能源。我国煤层气资源丰富,根据国土资源部最新资源评价,全国埋深2000m以浅煤层气地质资源量为36.8万亿m3,相当于国内目前常规天然气地  相似文献   

5.
煤层气的前景与常规天然气相当。当前我国常规天然气开发产能低于石油,经过发展,未来天然气产量将与石油相持平。如果煤层气开发利用规模达到常规天然气开发利用的规模,相当于我国能源供给将在现有石油产能的基础上增加两倍,资源前景相当可观。我国煤层气产业大规模商业化发展将加速实现。  相似文献   

6.
煤层气的前景与常规天然气相当。当前我国常规天然气开发产能低于石油,经过发展,未来天然气产量将与石油相持平。如果煤层气开发利用规模达到常规天然气开发利用的规模,相当于我国能源供给将在现有石油产能的基础上增加两倍,资源前景相当可观。我国煤层气产业大规模商业化发展将加速实现。  相似文献   

7.
煤层气是与煤共生伴生并赋存于煤系地层的非常规天然气,其成份以甲烷(CH4)为主,与常规天然气相当,是一种洁净的高热值能源资源和良好的化工原料。据有关资料介绍,目前,世界煤层气资源总量初步估算为113—255万亿m3,其中中国估计埋深在2000m以浅的...  相似文献   

8.
天然气在中国一次能源结构中的比重远低于世界平均24%左右的水平,2019年天然气在中国一次能源消费结构中的比重为7.8%,优化能源结构、加快天然气的发展,已成为中国低碳经济发展的必选路径.中国煤层气资源量36.8万亿m3,但开采程度低,目前年产量88.8亿m3,发展潜力巨大.研究表明,中国煤层气发展面临地质条件复杂、适...  相似文献   

9.
《中国能源》2013,(7):22
煤层气是优质清洁能源,我国煤层气资源量约36.81万亿m3,居世界第三位。世界主要产煤国都十分重视煤层气开发。我国"十一五"规划中将煤层气列为重要的发展产业,并制定了一系列政策措施,强力推进煤层气的开发利用。  相似文献   

10.
煤层气产业发展战略与相关政策问题   总被引:6,自引:0,他引:6  
我国一次能源生产总量已基本满足国民经济发展的需要,但石油和天然气等低污染能源比例偏低,难以适应经济、环境和社会可持续发展的要求。大力开发利用煤层气资源,既可以弥补我国油气资源的相对不足,改善能源消费结构,又可以防治煤矿瓦斯事故的发生,是功在当代、惠及子孙的伟大事业。煤层气产业的发展需要一系列配套的政策和相关法规的支撑,统一规划、合理开发、政策扶持、重点突破、协调发展是煤层气产业发展的必由之路。  相似文献   

11.
 In this paper, a novel combined cycle with synthetic utilization of coal and natural gas is proposed, in which the burning of coal provides thermal energy to the methane/steam reforming reaction. The syngas fuel, generated by the reforming reaction, is directly provided to the gas turbine as fuel. The reforming process with coal firing has been investigated based on the concept of energy level, and the equations has been derived to disclosing the mechanism of the cascade utilization of chemical energy of natural gas and coal in the reforming process with coal firing. Through the synthetic utilization of natural gas and coal, the exergy destruction of the combustion of syngas is decreased obviously compared with the direct combustion of natural gas and coal. As a result, the overall thermal efficiency of the new cycle reaches 52.9%, as energy supply by methane is about twice as much as these of coal. With the same consumption of natural gas and coal the new cycle can generate about 6% more power than the reference cycles (the combined cycle and the steam power plant). The promising results obtained here provide a new way to utilize natural gas and coal more efficiently and economically by synthetic utilization.  相似文献   

12.
Greenhouse gas (GHG) accounting with respect to two categories of methane recovery and oxidation activities (coal bed or coal mine methane recovery and landfill gas (LFG) recovery) within the Clean Development Mechanism (CDM) is analysed. It is found that baseline methodologies approved by the CDM Executive Board apply systematically inconsistent assumptions concerning the global warming impact of carbon dioxide emissions from the oxidation of methane. One important implication of the results is that applying the baseline methodologies approved for project activities involving LFG recovery will lead to overestimation of the net GHG abatement effect of such CDM project activities.  相似文献   

13.
Development of a model for optimal power generation from the thermal oxidation of a low concentration coal bed mine has been considered as the main objective of this investigation. The model has been applied to identify the optimal thermodynamic characteristics of the power generation system through using a mixture with 1.6% methane concentration in a recuperative lean-burn gas turbine and coupling a gas engine to the system for more power generation from the remaining coal bed methane. The implementation of the model based on the real site condition would lead to the generation of 6.97 MW electricity in Tabas coal mine of Iran.  相似文献   

14.
我国天然气供需现状及煤制天然气工艺技术和经济性分析   总被引:3,自引:1,他引:2  
付国忠  陈超 《中外能源》2010,15(6):28-34
我国天然气消费市场持续增长,2008年天然气消费量达807×10^8m3,比上年增长10.1%;2020年天然气需求将增至2500×10^8m3,供应缺口达1000×10^8m3。与国际天然气价格相比,我国天然气价格水平仍然偏低。煤制天然气可以作为液化石油气和常规天然气的替代和补充,缓解我国天然气供应缺口。其竞争力主要源于可采用低价劣质煤.需要选择的主要是煤气化及甲烷化技术。含水含灰高、低热值的褐煤比较适于碎煤加压固定床或流化床气化。鲁奇煤气化工艺是煤制天然气项目首选的煤气化技术,此外还有流化床气化炉技术、BGL块/碎煤熔渣气化技术。鲁奇甲烷化技术是世界上首个商业化业绩,此外还有托普索公司甲烷化循环工艺技术和Davy甲烷化技术。以某年产10×10^8m3(标准)煤制天然气项目为例,其投资利润率16.16%(平均),全部投资内部收益率16.21%(所得税后),投资回收期7.72年,在经济上是可行的。目前一些地方和企业对煤制天然气项目的风险认识不足,首先应正确评价煤制天然气的能源效率和CO2排放,过分强调和夸大煤制天然气这个单一过程的高能源效率是不客观的:其次应认识到原料煤及产品价格是制约煤制天然气项目的关键因素;同时此类项目产品关联度低,并会受到天然气管网建设和管理的制约。  相似文献   

15.
我国发展煤制天然气误区分析   总被引:1,自引:1,他引:0  
从煤炭中的C转化成CH4,需要进行煤气化、脱硫、CO变换、脱除CO2,然后甲烷化反应。在这一生产过程中,碳的利用率和热能转换率均约为1/3,制取1000m3的CH4要放出约3.34t的二氧化碳。按照我国拟建和在建的煤制天然气规模360×108m3/a、碳的利用率1/3计,将浪费煤炭5664×104t标煤,排放二氧化碳1.2×108t,总投资需2100亿元。据测算,煤制天然气生产成本约为3元/m3CH4,与管输进口天然气相比,价格上没有竞争性,并带来环境污染。由于煤制天然气投资费用高(1000m3/a天然气的投资费用约合5833元)、碳与热能利用率低、污染源处理费用高,所以煤制天然气不应该是煤清洁利用的发展方向。我国常规天然气储量和产量迅速增加,预计到2020年天然气产量将达到2000×108m3(约合2×108t油当量),而有关机构预测我国2020年天然气消费量为1.46×108t油当量,国产常规天然气产量就可满足国内燃料消费需求,为此我国完全没有必要大规模建煤制天然气项目。  相似文献   

16.
Focusing on the traditional principle of physical energy utilization, new integration concepts for combined cooling, heating and power (CCHP) system were identified, and corresponding systems were investigated. Furthermore, the principle of cascade utilization of both chemical and physical energy in energy systems with the integration of chemical processes and thermal cycles was introduced, along with a general equation describing the interrelationship among energy levels of substance, Gibbs free energy of chemical reaction and physical energy. On the basis of this principle, a polygeneration system for power and liquid fuel (methanol) production has been presented and investigated. This system innovatively integrates a fresh gas preparation subsystem without composition adjustment process (NA) and a methanol synthesis subsystem with partial-recycle scheme (PR). Meanwhile, a multi-functional energy system (MES) that consumes coal and natural gas as fuels simultaneously, and co-generates methanol and power, has been presented. In the MES, coal and natural gas are utilized synthetically based on the method of dual-fuel reforming, which integrates methane/steam reforming and coal combustion. Compared with conventional energy systems that do not consider cascade utilization of chemical energy, both of these systems provide superior performance, whose energy saving ratio can be as high as 10%–15%. With special attention paid to chemical energy utilization, the integration features of these two systems have been revealed, and the important role that the principle of cascade utilization of both chemical and physical energy plays in system integration has been identified.  相似文献   

17.
The production of synthesis gas has gained increasing importance because of its use as raw material for various industrial syntheses. In this paper synthesis gas generation during the reaction of a coal/methane with steam and oxygen, which is called the co-gasification of coal and natural gas, was investigated using a laboratory scale fixed bed reactor. It is found that about 95% methane conversion and 80% steam decomposition have been achieved when the space velocity of input gas (oxygen and methane) is less than 200 h−1 and reaction temperature about 1000 °C. The product gas contains about 95% carbon monoxide and hydrogen. The reaction system is near the equilibrium when leaving the reactor.  相似文献   

18.
摘要:煤炭开发利用领域是我国碳排放的主要来源,也是我国碳减排的重点领域,厘清碳排放规律和碳减排潜力是实现碳减排的基础。本文探讨了煤炭开发利用碳排放研究方法,给出了煤炭开发、洗选、发电、转化等煤炭开发利用各主要环节及全过程碳排放规律,计算和分析了我国煤炭开发利用碳减排的潜力。通过加大瓦斯抽采利用力度、有效利用矿井低温热源、采用先进发电和转化技术等措施,到2015年及2020年可分别减排CO2 3.8亿~5.6亿t/a和6.6亿~8.9亿t/a。  相似文献   

19.
主要是从霍林河河组的地质条件及其煤层特征双角度出发,详细地阐述了霍林河盆地煤层气的基本地质特征,指出煤的镜质组反射率多在0.5%~0.6%之间,煤质含气量最高为7.7m3?t-1。煤质中煤层气含量以及煤层气中甲烷含量随深度加大而迅速增加。400m以下为甲烷带,400m以上为甲烷——氮气带。同时,预测了有利于煤层气形成和勘探的有利地段,9-73孔、21-11孔附近地区为最有利煤层气勘探区。  相似文献   

20.
In order to effectively utilize the coal bed methane (CBM) resources extracted from underground coal mines, an evaluation method of hydrogen production capacity from CBM is established by means of experiments and theoretical models. The main components of CBM collected from coal working face are measured by gas chromatography, and the release law of trace hydrogen is obtained. Considering gas extraction technology in goaf roof, a computational fluid dynamics model for seepage problem in porous media is presented. The law of gas migration in goaf under extraction conditions is obtained by simulation, and the extraction rate of CBM and methane/hydrogen content are predicted. The technology of producing hydrogen from CBM extracted from goaf under low gas concentration is discussed, and the effect of methane content on auto-thermal conversion efficiency is analyzed. Under the condition of this study case, the theoretical estimation of pure hydrogen produced from goaf extraction can reach more than 10,000 m3 per day. The presented results could provide a new route for the utilization of CBM by underground extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号