首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mobility support in wireless Internet   总被引:7,自引:0,他引:7  
The tremendous advancement and popularity of wireless access technologies necessitates the convergence of multimedia (audio, video, and text) services on a unified global (seamless) network infrastructure. Circuit-switched proprietary telecommunication networks are evolving toward more cost-effective and uniform packet-switched networks such as those based on IP. However, one of the key challenges for the deployment of such wireless Internet infrastructure is to efficiently manage user mobility. To provide seamless services to mobile users, several protocols have been proposed over the years targeting different layers in the network protocol stack. In this article we present a cross-layer perspective on the mobility protocols by identifying the key features of their design principles and performance issues. An analysis of the signaling overhead and handoff delay for some representative protocols in each layer is also presented. Our conclusion is that although the application layer protocol is worse than the protocols operating in the lower layers, in terms of handoff delay and signaling overhead, it is better suited as a potential mobility solution for the next-generation heterogeneous networks, if we consider such factors as protocol stack modification, infrastructure change, and inherent operational complexity.  相似文献   

2.
钟科  陈向东 《通信技术》2012,45(8):65-67
为了实现智能家居系统中的远程及近程控制,从物联网的概念出发,设计实现了一个嵌入式的WEB网关服务器,将基于Zigbee协议的无线传感器网络与基于TCP/IP协议的Internet相联。该设计采用STM32F107VC为主控制器,通过串口实现与WSN协调器的通信,外接一个网卡芯片实现与Internet的连接。在软件设计上重点实现智能家居通信控制系统,并引入嵌入式操作系统uCOS-II对系统资源进行管理,移植LwIP协议栈实现TCP/IP的基本功能。  相似文献   

3.
One challenge in the development of telecommunication networks is the seamless integration of wireless devices into the global Internet. Although it is well known that the Internet protocols were designed for heterogeneous networks an end-system with the usual Internet protocol stack will suffer an inefficient communication while connected via a wireless link. The protocol mechanisms of the transport layer can lead to poor performance in case of TCP and a high loss rate in case of UDP. In this paper we advocate a Remote Socket Architecture (ReSoA) which is a kind of proxy-oriented architecture for wireless Internet access in Wireless LAN environment. This approach allows the use of a thin protocol stack on the wireless end-system to save scarce resources and a tailored protocol for the wireless link without breaking the original TCP semantics. We show the suitability of ReSoA by comparing its performance with that of pure TCP and Berkeley Snoop through actual measurements in a test environment.  相似文献   

4.
TCP is a reliable transport protocol tuned to perform well in traditional networks where congestion is the primary cause of packet loss. However, networks with wireless links and mobile hosts incur significant losses due to bit-errors and handoffs. This environment violates many of the assumptions made by TCP, causing degraded end-to-end performance. In this paper, we describe the additions and modifications to the standard Internet protocol stack (TCP/IP) to improve end-to-end reliable transport performance in mobile environments. The protocol changes are made to network-layer software at the base station and mobile host, and preserve the end-to-end semantics of TCP. One part of the modifications, called the snoop module, caches packets at the base station and performs local retransmissions across the wireless link to alleviate the problems caused by high bit-error rates. The second part is a routing protocol that enables low-latency handoff to occur with negligible data loss. We have implemented this new protocol stack on a wireless testbed. Our experiments show that this system is significantly more robust at dealing with unreliable wireless links than normal TCP; we have achieved throughput speedups of up to 20 times over regular TCP and handoff latencies over 10 times shorter than other mobile routing protocols.This work was supported by ARPA Contract J-FBI-93-153. This paper was in part presented at the ACM Mobile Computing and Networking Conference (Mobicom '95), Berkeley, California, 14–15 November 1995.  相似文献   

5.
This paper presents a performance enhancing transport architecture for the satellite environment. This solution improves the network transport performance by overcoming the limits imposed by a transmission control protocol/Internet protocol (TCP/IP)-based stack suite, while maintaining the interfaces offered by it. This is an important issue since TCP/IP is widely used and most of the applications are based on it. The work starts from the state-of-the-art about the transport layer over satellite by distinguishing two alternative frameworks: the black box (BB) and the complete knowledge (CK) approaches. In the former, the network is considered as a "black box" and only modifications in the terminal tools are permitted. In the latter, the complete control of any network element is allowed so as a performance optimization procedure is possible. The proposed architecture [called Performance Enhancing Transport Architecture (PETRA)] is designed in all details using the second approach. PETRA uses network elements, called relay entities, to isolate the satellite portions in case of heterogeneous networks, while a transport layer protocol stack is used to optimize the transport of information over satellite links. A special satellite transport protocol, that is part of the transport layer protocol stack, is used over such links to perform error recovery. Simulation results show that the proposed framework significantly enhances throughput performance.  相似文献   

6.
This paper deals with quality of service (QoS) provision in wireless IP networks. QoS provision is particularly challenging in wireless networks, where network resources are generally limited, variable over time and shared. In the design of possible measures to assure QoS one should consider that standardization is well established for the network layer Internet Protocol and for many underlying technologies of frequent use (e.g. IEEE 802.11, BLUETOOTH or HIPERLAN II). Therefore, as far as research on QoS is concerned, there is little room in both the IP and the link-layers for improved IP over wireless interfaces. In this paper we illustrate a solution in which an intermediate Wireless Adaptation Layer (WAL) is transparently interposed between the IP layer and specific link-layer technologies as a solution to provide QoS. The WAL addresses two main issues: (i) compensation for channel impairments in different platforms in order to enhance wireless channel reliability and (ii) implementation of traffic control and packet scheduling mechanisms to satisfy bandwidth and delay requirements, as well as to enforce a general principle of fairness among the IP associations contending for network resources and achieve optimal exploitation of transmission capacity. The WAL consists of a set of modules, each one in charge of a specific task, which can be enabled or disabled depending on the specific network environment. The novelty of the WAL approach is its capability of adapting itself to different wireless interfaces selecting performance enhancing modules for specific networks. This requires to modify the standard TCP/IP protocol stack by introducing an intermediate layer between the IP layer and the Data Link layer, with performance enhancement purposes. This paper focuses on two modules in particular, namely a traffic control module, which is in charge of performing congestion control and channel state dependent scheduling (CSD) packet scheduling, and a forward error correction (FEC) module, which compensates for channel impairments. This paper presents the proposed architecture provided with these modules and reports some measurements and simulations highlighting benefits resulting from the use of such modules.  相似文献   

7.
It is commonly held that next generation mobile systems will be developed on the Internet in combination with diverse access technologies, as the future network architecture will be the coming together of various overlapping wireless access networks. Integrating various wireless networks in future heterogeneous networking environments poses many difficulties, the most critical challenge of which is efficient support for seamless mobility. SIP is a promising nominee for managing mobility in heterogeneous networks as it provides mobility within the application layer and the characteristics of the lower layer protocols are invisible to it. However, the performance of SIP-based mobility management is downgraded, resulting from its adoption of TCP/UDP for signaling and its strict separation between the lower layers and the application layer of the protocol stack. In this paper, a SIP-based cross-layer design for fast handoffs is proposed to shorten the service interruption time when a mobile node crosses the overlapped area of a WLAN/3G cellular system. As will be shown by the simulation results, the SIP-based solution proposed in this paper effectively lessens the handoff delays caused by either the horizontal handoff or vertical handoff in future all-IP heterogeneous wireless networks.  相似文献   

8.
Applications using traditional protocol stacks (e.g., TCP/IP) from wired networks do not function efficiently in mobile wireless environments. This is primarily due to the layered architecture and implementation of protocol stacks. One mechanism to improve the efficiency of the stack is cross-layer feedback, that is, making information from within one layer available to another layer of the stack. For example, TCP retransmissions can be reduced by making it aware of network disconnections or handoff events. We highlight the need for a cross-layer feedback architecture and identify key design goals for an architecture. We present our ECLAIR architecture, which satisfies these design goals. We describe a prototype implementation that validates ECLAIR. We also discuss other cross-layer architectures and provide a cross-layer design guide.  相似文献   

9.
Mobile telecommunication new services are based on data networks specially Internet. These services include http, telnet, ftp, Simple Mail Transfer Protocol, etc. Besides, we recognize a mobile network as a multiuser network. Transmission Control Protocol (TCP)/Internet Protocol which is sensitive to link congestion in wireline data links is also used in wireless networks. In order to improve the system performance, the TCP layer uses flow control and congestion control. Besides, radio link control (RLC) and medium access control sublayers have been introduced to compensate the deficiency of TCP layer in wireless environment. RLC has an important role in quality of service enhancement of the Universal Mobile Telecommunications System (UMTS). In this paper, we review the protocol stack of UMTS Terrestrial Radio Access Network which is based on Third-Generation Partnership Project. Then, we evaluate its layer 2 error control mechanisms and verify TCP over automatic repeat request error control mechanism and finally quality of service improvement results from it in fading channels.  相似文献   

10.
Gyasi-Agyei  A. 《IEEE network》2001,15(6):10-22
Realistic realization and mass acceptance of mobile data services require networking architectures offering acceptable quality of service and attractive tariffs. A novel strategy for this goal is maximum integration of popular data networking standards and their infrastructure into wireless networks. This article discusses a Mobile IP-based network architecture to provide IP services in DECT to support IMT-2000 applications. DECT offers micromobility within multicell subnets, while Mobile IP supports macromobility between multicell subnets. Incorporating Mobile IP into the DECT handoff mechanism in this way extends DECT micromobility with IP macromobility. Also, utilizing fast, seamless DECT handoff management reduces Mobile IP handoff delay to circumvent TCP throughput degradation during handoff and reduce frequency of Mobile IP signaling over the ether to conserve spectral efficiency. This feature seamlessly unifies DECT with the global Internet. Seamless integration of DECT with the Internet is crucial due to the continuing phenomenal popularity of the Internet and wireless communications, and ubiquity of DECT systems. To achieve the above DECT/IP interworking efficiently, the architecture introduces a network entity called a DECT service switching point, which is an extended DECT central control fixed part. DECT network-level services are mapped onto those of the IETF integrated services architecture to maintain QoS provided by DECT in the backbone Internet. Mobile Resource Reservation Protocol, an extended RSVP tailored to mobile networking, is adopted to provide the needed signaling in IntServ. The proposed architecture preserves traditional non-IP based services such as PSTN voice  相似文献   

11.
Cross-Layer Design for QoS Support in Multihop Wireless Networks   总被引:2,自引:0,他引:2  
Due to such features as low cost, ease of deployment, increased coverage, and enhanced capacity, multihop wireless networks such as ad hoc networks, mesh networks, and sensor networks that form the network in a self-organized manner without relying on fixed infrastructure is touted as the new frontier of wireless networking. Providing efficient quality of service (QoS) support is essential for such networks, as they need to deliver real-time services like video, audio, and voice over IP besides the traditional data service. Various solutions have been proposed to provide soft QoS over multihop wireless networks from different layers in the network protocol stack. However, the layered concept was primarily created for wired networks, and multihop wireless networks oppose strict layered design because of their dynamic nature, infrastructureless architecture, and time-varying unstable links and topology. The concept of cross-layer design is based on architecture where different layers can exchange information in order to improve the overall network performance. Promising results achieved by cross-layer optimizations initiated significant research activity in this area. This paper aims to review the present study on the cross-layer paradigm for QoS support in multihop wireless networks. Several examples of evolutionary and revolutionary cross-layer approaches are presented in detail. Realizing the new trends for wireless networking, such as cooperative communication and networking, opportunistic transmission, real system performance evaluation, etc., several open issues related to cross-layer design for QoS support over multihop wireless networks are also discussed in the paper.  相似文献   

12.
JTCP: jitter-based TCP for heterogeneous wireless networks   总被引:3,自引:0,他引:3  
Transmission control protocol (TCP), a widely used transport protocol performs well over the traditional network which is constructed by purely wired links. As wireless access networks are growing rapidly, the wired/wireless mixed internetwork, a heterogeneous environment will get wide deployment in the next-generation ALL-IP wireless networks. TCP which detects the losses as congestion events could not suit the heterogeneous network in which the losses will be introduced by higher bit-error rates or handoffs. There exist some unsolved challenges for applying TCP over wireless links. End-to-end congestion control and fairness issues are two significant factors. To satisfy these two criteria, we propose a jitter-based scheme to adapt sending rates to the packet losses and jitter ratios. The experiment results show that our jitter-based TCP (JTCP) conducts good performance over the heterogeneous network.  相似文献   

13.
The Internet Engineering Task Force (IETF) is currently in the process of overhauling the architecture of the Internet to meet new challenges and support new applications. One of the most important components of that venture is the enhancement of the Internet service model from a classless best effort service architecture to an integrated services architecture supporting a multitude of classes and types of services. This paper presents the design, implementation, and experiences with a protocol architecture for the integrated services Internet. It is based on the emerging standards for resource reservation in the Internet, namely, the RSVP protocol and the associated service specifications defined by the IETF. Our architecture represents a major functional enhancement to the traditional TCP/IP protocol stack. It is scalable in terms of performance and number of network sessions, and supports a wide variety of network interfaces ranging from legacy LAN interfaces, such as Token Ring and Ethernet, to high-speed ATM interfaces. The paper also describes the implementation of this architecture on the IBM AIX platform and our experiences with the system. We then present a performance analysis of the system which quantifies the overheads imposed by all components of the QoS support, such as traffic policing, traffic shaping, and buffer management  相似文献   

14.
This paper presents an analytical method of optimal breaking of a transmission control protocol (TCP)/Internet protocol (IP) message into medium access control (MAC) packets in networks without cut-through routing (such as networks compliant with the IEEE 802.11 wireless local area network standard). The method accounts for the transmission delay of acknowledgement frames, the sliding window flow control in TCP/IP protocol, error control via retransmissions, and heterogeneity of transport parameters (link-to-link and upstream-downstream) along a multihop network path. Mathematically, the problem consists in minimizing the TCP/IP message transaction time, a nonlinear function of the MAC packet size, in the presence of a set of linear restrictions. Throughput calculations illustrating this method are performed using IEEE 802.11 data.  相似文献   

15.
TCP performance issues over wireless links   总被引:10,自引:0,他引:10  
This article discusses the problems arising when the TCP/IP protocol suite is used to provide Internet connectivity over existing and emerging wireless links. Due to the strong drive toward wireless Internet access through mobile terminals, these problems must be carefully studied in order to build improved systems. We review wireless link characteristics using wireless LANs and cellular communications systems as examples. We then outline the performance problems of the TCP/IP protocol suite when employed over those links, such as degraded TCP performance due to mistaking wireless errors for congestion. We present various proposals for solving these problems and examine their benefits and limitations. Finally, we consider the future evolution of wireless systems and the challenges that emerging systems will impose on the Internet protocol suite  相似文献   

16.
Efficient authentication and key distribution in wireless IP networks   总被引:6,自引:0,他引:6  
Emerging broadband access technologies such as 802.11 are enabling the introduction of wireless IP services to an increasing number of users. Market forecasts suggest that a new class of network providers, commonly referred to as wireless Internet service providers, will deploy public wireless networks based on these new technologies. In order to offer uninterrupted IP service combined with ubiquitous seamless mobility, these multiprovider networks need to be integrated with each other, as well as with wide-area wireless technologies such as third-generation cdma2000 and UMTS. Therefore, efficient authentication and dynamic key exchange protocols that support heterogeneous domains as well as networks with roaming agreements across trust boundaries are key to the success of wide-area wireless IP infrastructures. In this article we first describe a simple network model that accounts fro heterogeneity in network service providers, and put forward the requirements any authentication and key exchange protocol that operates in such a model should satisfy, in terms of network efficiency, security, and fraud prevention. We then introduce a new authentication and key exchange protocol, wireless shared key exchange (W-SKE). We characterize properties and limitations of the W-SKE against the requirements discussed earlier. Finally, we contrast W-SKE against other well-known and emerging approaches.  相似文献   

17.
黄德强 《电子器件》2003,26(2):226-228
当前Linux正在嵌入式开发领域稳步发展,任何对嵌入式LINUX技术感兴趣的人都可以从因特网免费下载其内核和应用程序,并开始移植或开发;由于LINUX可以提供免费的TCP/IP协议栈,使得我们开发基于嵌入式设备的网络应用时不必花费几十万人民币去购买相关的TCP/IP协议栈。与此同时,中国移动于2002年5月正式开通GPRS网络(2.5G移动通信技术),由于GPRS网络支持TCP/IP协议,这使得无线数据传输变得更加轻松,而且相对价格比SMS(短消息)等要便宜许多。因此,综合嵌入式LINUX技术和GPRS网络来实现无线数据采集与传输具有非常诱人的前景。必将受到越来越多的重视。  相似文献   

18.
A wireless LAN service integration architecture based on current wireless LAN hot spots is proposed so that migration to a new service becomes easier and cost effective. The proposed architecture offers wireless LAN seamless roaming in wireless LAN/cellular mobile networks. In addition, a link-layer-assisted mobile IP handoff mechanism is introduced to improve the network/domain switching quality in terms of handoff delay and packet loss. An application layer end-to-end authentication and key negotiation scheme is proposed to overcome the open-air connection problem existing in wireless LAN deployment. The scheme provides a general solution for Internet applications running on a mobile station under various authentication scenarios and keeps the communications private to other wireless LAN users and foreign network. A functional demonstration of the scheme is given. The research results can contribute to rapid deployment of wireless LANs.  相似文献   

19.
TCP/IP在GPRS/EGPRS网络中的应用及影响   总被引:2,自引:2,他引:0  
常琨  马天光  史琳 《通信技术》2010,43(12):112-114
通用分组无线业务/增强型数据速率演进技术(GPRS/EGPRS)服务扩展了当前世界上最流行的第二代移动系统——基于语音的GSM,使其能够收发基于分组的数据。随着移动通信技术的发展和业务的多样化,人们对数据业务的需求不断增加,GPRS/EGPRS网络优化也成为了重中之重。除传统的无线网络及核心网络优化外,将其以端到端的思路分析,看为无线+IP网络技术,成为了新的优化思路。因此传输控制协议/因特网互联协议(TCP/IP)作为互联网固有的最为广泛的传输协议在无线分组数据业务网络中同样得到广泛应用。主要就TCP/IP协议在GPRS/EGPRS中的应用其影响进行了分析。  相似文献   

20.
TCP Throughput Enhancement over Wireless Mesh Networks   总被引:1,自引:0,他引:1  
TCP is the predominant technology used on the Internet to support upper layer applications with reliable data transfer and congestion control services. Furthermore, it is expected that traditional TCP applications (e.g., Internet access) will continue to constitute the major traffic component during the initial deployment of wireless mesh networks. However, TCP is known for its poor throughput performance in wireless multihop transmission environments. For this article, we conducted simulations to examine the impact of two channel interference problems, the hidden terminal and exposed terminal, on TCP transmissions over wireless mesh networks. We also propose a multichannel assignment algorithm for constructing a wireless mesh network that satisfies the spatial channel reuse property and eliminates the hidden terminal problem. The simulation results demonstrate the effectiveness of the proposed approach in improving the performance of TCP in wireless multihop networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号