首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Experimental and numerical research on full-scale high strength thin-walled rectangular steel slender tubes filled with high strength concrete has not been reported in the literature. In a companion paper, a new numerical model was presented that simulates the nonlinear inelastic behavior of uniaxially loaded high strength thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns with local buckling effects. The progressive local and post-local buckling of thin steel tube walls under stress gradients was incorporated in the numerical model. This paper presents the verification of the numerical model developed and its applications to the investigation into the fundamental behavior of high strength thin-walled CFST slender beam-columns. Experimental ultimate strengths and load-deflection responses of CFST slender beam-columns tested by independent researchers are used to verify the accuracy of the numerical model. The verified numerical model is then utilized to investigate the effects of local buckling, column slenderness ratio, depth-to-thickness ratio, loading eccentricity ratio, concrete compressive strengths and steel yield strengths on the behavior of high strength thin-walled CFST slender beam-columns. It is demonstrated that the numerical model is accurate and efficient for determining the behavior of high strength thin-walled CFST slender beam-columns with local buckling effects. Numerical results presented in this study are useful for the development of composite design codes for high strength thin-walled rectangular CFST slender beam-columns.  相似文献   

2.
The steel tube walls of a biaxially loaded thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-column may be subjected to compressive stress gradients. Local buckling of the steel tube walls under stress gradients, which significantly reduces the stiffness and strength of a CFST beam-column, needs to be considered in the inelastic analysis of the slender beam-column. Existing numerical models that do not consider local buckling effects may overestimate the ultimate strengths of thin-walled CFST slender beam-columns under biaxial loads. This paper presents a new multiscale numerical model for simulating the structural performance of biaxially loaded high-strength rectangular CFST slender beam-columns accounting for progressive local buckling, initial geometric imperfections, high strength materials and second order effects. The inelastic behavior of column cross-sections is modeled at the mesoscale level using the accurate fiber element method. Macroscale models are developed to simulate the load-deflection responses and strength envelopes of thin-walled CFST slender beam-columns. New computational algorithms based on the Müller's method are developed to iteratively adjust the depth and orientation of the neutral axis and the curvature at the column's ends to obtain nonlinear solutions. Steel and concrete contribution ratios and strength reduction factor are proposed for evaluating the performance of CFST slender beam-columns. Computational algorithms developed are shown to be an accurate and efficient computer simulation and design tool for biaxially loaded high-strength thin-walled CFST slender beam-columns. The verification of the multiscale numerical model and parametric study are presented in a companion paper.  相似文献   

3.
This paper presents a performance-based analysis (PBA) technique based on fiber element formulations for the nonlinear analysis and performance-based design of thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects. Geometric imperfections, residual stresses and strain hardening of steel tubes and confined concrete models are considered in the PBA technique. Initial local buckling and effective strength/width formulas are incorporated in the PBA program to account for local buckling effects. The progressive local buckling of a thin-walled steel tube filled with concrete is simulated by gradually redistributing normal stresses within the steel tube walls. Performance indices are proposed to quantify the section, axial ductility and curvature ductility performance of thin-walled CFST beam-columns under axial load and biaxial bending. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a thin-walled CFST beam-column section to satisfy equilibrium conditions. The analysis algorithms for thin-walled CFST beam-columns under axial load and uni- and biaxial bending are presented. The PBA program can efficiently generate axial load-strain curves, moment-curvature curves and axial load-moment strength interaction diagrams for thin-walled CFST beam-columns under biaxial loads. The proposed PBA technique allows the designer to analyze and design thin-walled CFST beam-columns made of compact or non-compact steel tubes with any strength grades and normal and high-strength concrete. The verification and applications of the PBA program are given in a companion paper.  相似文献   

4.
The ultimate strength and ductility of high strength thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects, are investigated in this paper, using a performance-based analysis (PBA) technique. The PBA technique accounts for the effects of geometric imperfections, residual stresses, strain hardening, local buckling and concrete confinement on the behavior of high strength thin-walled CFST beam-columns. The accuracy of the PBA technique is further examined by comparisons with experimental results. The PBA program is employed to study the effects of depth-to-thickness ratio, concrete compressive strengths, steel yield strengths and axial load levels on the stiffness, strength and ductility of high strength thin-walled CFST beam-columns under combined axial load and biaxial bending. The results obtained indicate that increasing the depth-to-thickness ratio and axial load levels significantly reduces the stiffness, strength and ductility of CFST beam-columns. Increasing concrete compressive strengths increases the stiffness and strength, but reduces the axial ductility and section performance of CFST beam-columns. Moreover, the steel yield strength has a significant effect on the section and strength performance of CFST beam-columns but does not have a significant effect on their axial and curvature ductility.  相似文献   

5.
In composite construction, rectangular hollow steel tubular slender beam-columns are subjected to preloads arising from construction loads and permanent loads of the upper floors before infilling of the wet concrete. The behavior of biaxially loaded thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns with preloads on the steel tubes has not been studied experimentally and numerically. In this paper, a fiber element model developed for CFST slender beam-columns with preload effects is briefly described and verified by existing experimental results of uniaxially loaded CFST columns with preload effects. The fiber element model is used to investigate the behavior of biaxially loaded rectangular CFST slender beam-columns accounting for the effects of preloads and local buckling. Parameters examined include local buckling, preload ratio, loading angle, depth-to-thickness ratio, column slenderness, loading eccentricity and steel yield strength. The results obtained indicate that the preloads on the steel tubes significantly reduce the stiffness and strength of CFST slender beam-columns with a maximum strength reduction of more than 15.8%. Based on the parametric studies, a design model is proposed for axially loaded rectangular CFST columns with preload effects. The fiber element and design models proposed allow for the structural designer to efficiently analyze and design CFST slender beam-columns subjected to preloads from the upper floors of a high-rise composite building during construction.  相似文献   

6.
The theory and algorithms of a performance-based analysis (PBA) technique for the nonlinear analysis and performance-based design of thin-walled concrete-filled steel tubular (CFST) beam–columns with local buckling effects were presented in a companion paper. Initial local buckling and effective strength/width formulas for steel plates are incorporated in the PBA program to account for local buckling effects. Performance indices are used in the PBA program to quantify the section, axial ductility and curvature ductility performance of thin-walled CFST beam–columns. This paper presents the verification and applications of the PBA program developed. The axial load–strain curves, ultimate axial loads and moment–curvature curves for thin-walled CFST columns predicted by the PBA program are verified by experimental data. The PBA program is then utilized to investigate the effects of local buckling, depth-to-thickness ratio, concrete compressive strengths, steel yield strengths and axial load levels on the stiffness, strength and ductility performance of thin-walled CFST beam–columns under axial load and biaxial bending. The PBA technique developed is shown to be efficient and accurate and can be used directly in the performance-based design of thin-walled CFST beam–columns and implemented in advanced analysis programs for composite columns and frames.  相似文献   

7.
There is relatively little experimental and numerical research on the fundamental behavior of high strength circular concrete-filled steel tubular (CFST) slender beam-columns. In a companion paper, a new numerical model for predicting the nonlinear inelastic behavior of high strength circular CFST slender beam-columns under axial load and bending was presented. The numerical model developed accounts for confinement effects on the strength and ductility of the concrete core and on circular steel tubes as well as initial geometric imperfections of beam-columns. This paper presents the verification of the numerical model and extensive parametric studies on the fundamental behavior of high strength circular CFST slender beam-columns. The ultimate strengths and axial load-deflection responses of circular CFST slender beam-columns under eccentric loading predicted by the numerical model are verified by corresponding experimental results. The computer program implementing the numerical model is used to investigate the fundamental behavior of high strength circular CFST slender beam-columns in terms of load-deflection responses, ultimate strengths, axial load-moment interaction diagrams, and strength increase due to concrete confinement. Parameters examined include column slenderness ratio, eccentricity ratio, concrete compressive strengths, steel yield strengths, steel ratio and concrete confinement. It is demonstrated that the numerical model developed is an efficient computer simulation and design tool for high strength circular CFST slender beam-columns. Benchmark numerical results presented in this paper are valuable in the development of composite design codes for high strength circular CFST slender beam-columns.  相似文献   

8.
High strength circular concrete-filled steel tubular (CFST) slender beam-columns are frequently used in high-rise composite buildings because they possess higher strength and stiffness than normal strength ones. Most nonlinear inelastic methods of analysis for circular CFST slender beam-columns have not considered the effects of high strength materials and concrete confinement that significantly increases the strength and ductility of the concrete core. As a result, these methods produce computational solutions that deviate considerably from experimental results. This paper presents a new numerical model for predicting the nonlinear inelastic behavior of high strength circular CFST slender beam-columns under axial load and bending. The numerical model developed not only accounts for confinement effects on the concrete core and circular steel tubes but also incorporates initial geometric imperfections of beam-columns. Axial load-moment-curvature relationships obtained from the fiber element analysis of column cross-sections are utilized to determine the equilibrium states in the inelastic stability analysis of slender beam-columns. Computational algorithms are developed for determining the axial load-deflection and axial load-moment interaction curves for slender beam-columns. The numerical model is implemented in a computer program, which is shown to be an efficient and accurate simulation tool that can be used to investigate the fundamental behavior of high strength circular CFST slender beam-columns. The verification and applications of the numerical model are given in a companion paper.  相似文献   

9.
由于具有比普通构件强度高、刚度大等特点,高强圆钢管混凝土压弯构件被广泛用于高层建筑中。然而,针对此类构件的大多数非线性分析方法都没有考虑高强材料属性和混凝土约束的影响,这很大程度上高估了核心混凝土的强度和韧性。因此,这些方法的求解结果与试验结果相差很大。针对高强圆钢管混凝土压弯构件的非线性性能,提出新的数值模型。该模型不仅考虑了混凝土约束对核心混凝土和钢管的影响,还考虑了压弯构件的初始几何缺陷。根据通过有限元分析求得的轴力-弯矩曲线,确定压弯构件非线性稳定分析中的平衡状态。为确定轴力-变形及轴力-弯矩曲线,提出了计算准则。在计算机程序中应用该数值模型,可研究高强圆钢管混凝土压弯构件的基本性能。在后续文章中,将验证该模型的正确性,并应用此模型。  相似文献   

10.
在方钢管两临边焊接斜拉肋可显著提高薄壁方钢管的局部屈曲承载力,有效改善薄壁方钢管混凝土(CFST)柱的力学性能。为研究斜拉肋加劲薄壁方CFST柱的滞回性能,完成4个试件的拟静力试验。试验主要变化参数为斜拉肋上是否开孔、轴压比、钢管宽厚比。试验结果表明:试件的破坏模式为压弯破坏,破坏区域钢板受压鼓曲、钢管与斜拉肋之间纵向焊缝断裂、混凝土压溃;试件滞回曲线稳定饱满,无明显捏拢现象;试件破坏时位移延性系数均大于3.3,极限层间位移角均大于1/30;斜拉肋上开孔对试件的性能影响不明显,减小钢管宽厚比或者增加轴压比使试件耗能增大,但变形能力下降。应变分析结果表明:斜拉肋加劲方钢能对混凝土提供较均匀约束,并且斜拉肋与钢管之间能协同工作。基于ABAQUS软件建立的精细有限元模型能较准确地预测钢管混凝土柱在恒定轴力和反复水平力下的承载力及变形能力。参数分析表明:混凝土强度和轴压比明显影响试件的变形能力,进而建议混凝土强度与轴压比限值的关系。提出考虑斜拉肋和钢管约束之后的塑性应力分布方法计算N M曲线,与试验结果和有限元分析结果吻合良好。  相似文献   

11.
Eight stiffened square concrete-filled steel tubular (CFST) stub columns with slender sections of encasing steel and two non-stiffened counterparts were tested subjected to axial compressive load. Four types of reinforcement stiffeners and steel tensile strips were introduced to postpone local buckling of steel tubes, in which the tensile strip was first used as stiffener in CFSTs. The stiffening mechanism, failure modes of concrete and steel tubes, strength and ductility of stiffened square CFSTs were also studied during the experimental research. A numerical modeling program was developed and verified against the experimental data. The program incorporates the effect of the stiffeners on postponing local buckling of the tube and the tube confinement on concrete core. Extensive parametric analysis was also conducted to examine the influencing parameters on mechanical properties of stiffened square CFSTs.  相似文献   

12.
采用自行设计的压力-弯矩-扭矩复合受力加载装置,基于力-位移混合控制加载方法,完成了8个钢管混凝土柱试件在压-弯-扭等复合荷载作用下的拟静力试验,变化了截面形式、加载方式和弯扭比等参数。试验结果表明:圆钢管混凝土柱和矩形钢管混凝土柱在压-弯-扭等复合受力往复荷载作用下的滞回曲线较为饱满,没有“捏拢”现象产生,具有较好的耗能能力;弯扭比较大的矩形钢管混凝土试件在扭转角较大时由于钢管底部局部屈曲较为明显,存在承载力退化现象;钢管混凝土截面轴向应变基本满足平截面假定;弯矩的存在将削弱钢管混凝土柱的受扭能力;在压-弯-扭等复合受力往复荷载作用下,钢管剪应变与扭转角之间存在较好的线性关系。对试验实测结果和已有文献分析表明:在弯扭比较大时由主压应力导致钢管表面发生局部鼓曲而破坏,弯扭比较小时,主拉应变将导致钢管混凝土柱表面在低周往复荷载作用下开裂。研究成果可为进一步开发考虑扭转作用的钢管混凝土纤维梁单元提供基础性依据。  相似文献   

13.
圆端形钢管混凝土柱具有外观优美、截面布置灵活、承载力高和施工方便等优点,已被应用于实际工程中.为了研究圆端形钢管混凝土长柱的偏压性能,完成了 12根圆端形钢管混凝土柱的偏压试验,变化参数为偏心距和长细比.结果表明:该类柱的承载力随偏心距和长细比的提高而降低,而其延性随偏心距和长细比的提高而增加;达到峰值荷载前,圆端形钢...  相似文献   

14.
A mathematical model is developed to evaluate the monotonic and cyclic behavior of concrete-filled steel tube (CFST) beam-columns with rectangular cross section. The model includes the reduction in the steel compressive strength due the local buckling effect. The degradations in unloading and reloading stiffness of steel tube due to local buckling are also included. The model is based on fiber element method in which uniaxial stress–strain material laws are used for cross section components. The results obtained from the mathematical model were compared with experimental results for columns under monotonic as well as cyclic loads. It is observed that the proposed model predicts well the columns and beams nonlinear behavior compared with the experimental results.  相似文献   

15.
This paper presents a non-linear finite element model (FEM) used to predict the behaviour of slender concrete filled steel tubular (CFST) columns with elliptical hollow sections subjected to axial compression. The accuracy of the FEM was validated by comparing the numerical prediction against experimental observation of eighteen elliptical CFST columns which carefully chosen to represent typical sectional sizes and member slenderness. The adaptability to apply the current design rules provided in Eurocode 4 for circular and rectangular CFST columns to elliptical CFST columns were discussed. A parametric study is carried out with various section sizes, lengths and concrete strength in order to cover a wider range of member cross-sections and slenderness which is currently used in practices to examine the important structural behaviour and design parameters, such as column imperfection, non-dimension slenderness and buckling reduction factor, etc. It is concluded that the design rules given in Eurocode 4 for circular and rectangular CFST columns may be adopted to calculate the axial buckling load of elliptical CFST columns although using the imperfection of length/300 specified in the Eurocode 4 might be over-conservative for elliptical CFST columns with lower non-dimensional slenderness.  相似文献   

16.
The availability of high strength steels and concrete leads to the use of thin steel plates in concrete-filled steel tubular beam-columns. However, the use of thin steel plates in composite beam-columns gives a rise to local buckling that would appreciably reduce the strength and ductility performance of the members. This paper studies the critical local and post-local buckling behavior of steel plates in concrete-filled thin-walled steel tubular beam-columns by using the finite element analysis method. Geometric and material nonlinear analyses are performed to investigate the critical local and post-local buckling strengths of steel plates under compression and in-plane bending. Initial geometric imperfections and residual stresses presented in steel plates, material yielding and strain hardening are taken into account in the nonlinear analysis. Based on the results obtained from the nonlinear finite element analyses, a set of design formulas are proposed for determining the critical local buckling and ultimate strengths of steel plates in concrete-filled steel tubular beam-columns. In addition, effective width formulas are developed for the ultimate strength design of clamped steel plates under non-uniform compression. The accuracy of the proposed design formulas is established by comparisons with available solutions. The proposed design formulas can be used directly in the design of composite beam-columns and adopted in the advanced analysis of concrete-filled thin-walled steel tubular beam-columns to account for local buckling effects.  相似文献   

17.
This paper presents an effective theoretical model for the nonlinear inelastic analysis of circular concrete-filled steel tubular (CFST) short columns under eccentric loading. Accurate material constitutive relationships for normal and high strength concrete confined by either normal or high strength circular steel tubes are incorporated in the theoretical model to account for confinement effects that increase both the strength and ductility of concrete. The predicted ultimate bending strengths and complete moment-curvature responses of circular CFST columns under eccentric loading are compared with existing experimental results to examine the accuracy of the theoretical model developed. The fundamental behavior of circular CFST beam-columns with various diameter-to-thickness ratios, concrete compressive strengths, steel yield strengths, axial load levels and sectional shapes is studied using the verified theoretical model. Based on extensive numerical studies, a new design model for determining the ultimate pure bending strengths of circular CFST beam-columns is proposed. The theoretical model and formulas developed are shown to be effective simulation and design tools for the nonlinear inelastic behavior of circular CFST beam-columns under eccentric loading.  相似文献   

18.
《钢结构》2013,(4):74-75
介绍薄壁钢管混凝土(CFST)所进行的一组抗弯试验。对4个宽厚比为50~100的试验样本进行测试,其中两个为正方形样本,两个为矩形样本。通过试验获得试验样本的荷载-位移曲线、失效模式和极限承载力。建立受弯薄壁CFSTs的分析模型。该分析模型包括了约束混凝土的材料性能、冷弯薄壁型钢混凝土强度的增强、残余应力及钢板局部屈曲。所提出的模型还能较为精确地预测试验样本的性能和强度。此外,对现行的AISC标准、欧洲规范4和Han模型中关于受弯薄壁CFSTs的适用性进行了评估。  相似文献   

19.
This paper presents a nonlinear fiber element analysis method for determining the axial load-moment strength interaction diagrams for short concrete-filled steel tubular (CFST) beam-columns under axial load and biaxial bending. Nonlinear constitutive models for confined concrete and structural steel are considered in the fiber element analysis. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a composite section to satisfy equilibrium conditions. The accuracy of the fiber element analysis program is verified by comparisons of fiber analysis results with experimental data and existing solutions. The fiber element analysis program developed is employed to study the effects of steel ratios, concrete compressive strengths and steel yield strengths on axial load-moment interaction diagrams and the C-ratio of CFST beam-columns. The proposed fiber element analysis technique is shown to be efficient and accurate and can be used directly in the design of CFST beam-columns and implemented in advanced analysis programs for the nonlinear analysis of composite columns and frames.  相似文献   

20.
基于薄板小挠度理论,采用能量法对方钢管混凝土中钢板局部热屈曲性能进行了理论分析。推导了热力耦合作用下钢管混凝土中钢板的临界屈曲系数,并给出了相应的钢板临界屈曲温度计算公式;推导了钢管混凝土外包钢板在热力耦合作用下外荷载、热荷载与常温临界屈曲荷载的关系。结果表明:钢管的弹性模量对临界屈曲温度没有影响;宽厚比对临界屈曲系数及临界屈曲温度有较大影响,并建议了宽厚比限值;通过热屈曲临界系数求得构件屈曲时长宽比的最小值,可用于钢板热屈曲设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号