首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
在压力为7.5~21 MPa,热通量为50~413 kW·m~(-2),质量流速为519~1500 kg·m~(-2)·s~(-1)的实验参数范围内,对超临界CO_2在内径为10.0 mm的垂直上升管内的流动传热特性进行了均匀加热条件实验研究。分析了热通量、压力和浮升力对圆管内传热特性的影响规律。实验结果表明:随着热通量的增加,传热出现恶化现象,并且随着热通量的增加壁温峰值点向入口段移动。传热恶化发生在流体温度小于拟临界温度而壁面温度大于拟临界温度附近。增大压力时由于物性的变化趋于平缓,传热恶化被抑制。当传热恶化发生时,浮升力对传热恶化有明显的影响。基于实验数据,综合考虑物性变化和浮升力对传热的影响,建立了新的超临界二氧化碳传热关联式,在实验工况范围内,预测值与实验值的平均偏差和标准差分别为1.2%和16.29%。  相似文献   

2.
超临界压力水在垂直上升内螺纹管中的传热特性   总被引:6,自引:4,他引:2  
潘杰  杨冬  朱探  董自春  毕勤成 《化工学报》2011,62(2):307-314
在压力22.5~30 MPa,质量流速430~1200 kg·m-2·s-1,内壁热负荷284~719 kW·m-2范围内,对超临界压力水在均匀加热垂直上升内螺纹管内的传热特性进行了实验研究,得到了内螺纹管内超临界压力水的传热特性,分析了压力、热负荷和质量流速变化对内螺纹管壁温及传热系数的影响,探讨了拟临界区的传热机理,并给出了能用于工程实际的传热实验关联式。实验结果表明:垂直上升内螺纹管中超临界水具有良好的传热特性。在低焓值区内螺纹管壁温随焓增平缓增加,而在高焓值区壁温随焓增的升高明显。由于热物性的剧烈变化,超临界水在拟临界焓值区发生了明显的传热强化。压力与热负荷的增大以及质量流速的减小均会导致内螺纹管壁温的升高和传热系数的减小,使得传热强化现象削弱,甚至出现传热恶化。  相似文献   

3.
超临界压力下航空煤油传热恶化的分析与预测   总被引:1,自引:0,他引:1       下载免费PDF全文
王彦红  李素芬  赵星海 《化工学报》2018,69(12):5056-5064
对竖直上升圆管内超临界压力航空煤油的传热恶化进行了实验研究。考察了浮升力和热加速对换热的影响机制,通过判别准则的适用性分析,选取能较好描述传热恶化的因子组,修正得到了合理的临界值,从而获得了适用于航空煤油的判别准则。基于可控参数建立了传热恶化临界热通量预测公式。阐述了传热恶化引发热声流动不稳定的过程。通过浮升力因子和热加速因子修正建立了换热关联式。结果表明:浮升力因子Bu和热加速因子Ac分别高于1.57×10-5和4.92×10-6时,两者将削弱边界层内剪切力,引发传热恶化现象。拟沸腾也是传热恶化和热声流动不稳定的诱因。  相似文献   

4.
超临界二氧化碳(supercritical carbon dioxide, S-CO2)布雷顿循环燃煤发电系统中,炉膛内水冷壁管内S-CO2传热恶化行为,对该系统的设计建造与安全运行具有重要意义。建立S-CO2垂直上升管流动传热过程数值模型,开展S-CO2在垂直上升管流动及传热行为的数值模拟研究,分析了压力、质量流量、热通量和管径以及由物性变化引起的浮升力效应与流动加速效应等因素对传热特性的影响。结果表明:对于垂直上升管内加热条件下的S-CO2,提高其压力与质量流量有利于降低传热恶化程度。而提高热通量与管径则会加剧传热恶化。此外,在S-CO2垂直上升管内,存在明显的浮升力效应,导致发生传热恶化现象,而流动加速效应对传热的影响可以忽略。最后,在内径为4~10 mm、压力为11.07~22.14 MPa、质量流量为0~1200 kg/(m2·s)、热通量为0~200 kW/m2的宽范围工况下,建立深度神经网络模型(DNN),提出了临界热通量预测关联式,其预测精度可提升至94.96%。  相似文献   

5.
超临界压力下CO2在螺旋管内的混合对流换热   总被引:9,自引:3,他引:6       下载免费PDF全文
王淑香  张伟  牛志愿  徐进良 《化工学报》2013,64(11):3917-3926
在恒热流条件下,对超临界压力CO2在内径为9 mm,绕径为283 mm,节距为32 mm的螺旋管内垂直上升混合对流的传热特性进行了实验研究,实验参数范围为:进口压力8 MPa、质量流速0~650 kg·m-2·s-1、内壁热负荷0~50 kW·m-2。研究发现:受热螺旋管内超临界压力CO2的壁温及传热特性由变物性、浮升力及离心力的耦合作用共同支配,变物性及浮升力影响的相对大小可用Buoyancy数定性表征,当Bo>8×10-7时,自然对流占主导作用,浮升力作用引起强烈的二次流效应,显著强化传热;在浮升力和离心力共同作用下,截面周向温度最低点出现在外下侧区域,且当浮升力作用占优时,底部区域的传热系数大于外侧,当离心力作用占优时,底部区域的传热系数小于外侧。基于本实验获取的2346个数据点,得出了计算Nu实验关联式,90%以上的实验值与拟合公式计算值偏差在±20%以内。  相似文献   

6.
为获取高热流、低流速条件下超临界CO2的传热规律,开展了超临界CO2在内径2 mm水平小圆管内对流传热试验研究,并重点探讨了变物性、浮升力和热加速等效应对传热过程的影响。试验参数范围:系统压力7.6~8.4 MPa,质量流速400~500 kg/(m2?s),热通量0~200 kW/m2,流体温度20~60℃,Reynolds数1.2×104~4.3×104。分别采用Gr/Re 2Kv作为浮升力效应和热加速效应的判别因子。结果显示,在高热流低流速工况下,浮升力效应显著(Gr/Re 2 > 10-3),同一个截面处的上壁面传热系数始终小于下壁面传热系数。浮升力效应是高热流低流速工况下传热恶化的主要诱发因素。试验中热加速因子较小(Kv < 8.5×10-7),其效应可以忽略。将试验数据与典型的传热经验关联式作对比,结果表明Liao-Zhao关联式的计算结果与试验结果最吻合。  相似文献   

7.
高温高压水在垂直下降管内的传热特性   总被引:2,自引:2,他引:0       下载免费PDF全文
沈植  杨冬  陈功名  肖峰 《化工学报》2013,64(7):2386-2393
在压力11.5~28 MPa,质量流速450~1550 kg·m-2·s-1,内壁热负荷50~585 kW·m-2的范围内,对水在垂直下降管内的传热特性进行了实验研究,得到了垂直下降管内水的传热特性,分析了热负荷对内壁温度和传热系数的影响,给出了能用于工程实际的传热实验关联式,并且对垂直下降流动和垂直上升流动的传热特性进行了比较。实验结果表明:在亚临界和近临界压力区,垂直下降管会发生第一类传热恶化--膜态沸腾和第二类传热恶化--干涸。热负荷的增大,会导致传热恶化的提前发生和传热恶化发生后的壁温飞升值增大。在超临界压力区,壁温在低焓值区随焓值平缓增加,而在高焓值区随焓值明显升高,表明在拟临界点附近发生了传热强化现象。  相似文献   

8.
探讨了超临界压力下煤油流过内径为 1.70mm的不锈钢管的传热特性 .实验在压力为 5、 15MPa ,质量流率为 85 0 0~ 5 10 0 0kg·m-2 ·s-1和热负荷高达 5 5 .0MW·m-2 的参数范围内进行 .结果表明 :在内壁温达到拟临界温度时有拟沸腾现象发生 ;进一步提高热负荷会发生传热恶化 ,加入添加剂能提高临界热负荷 ;在极高热负荷下还会发生第 2次传热强化 ,限制了传热恶化的壁温飞升 .给出了煤油的强制对流传热关联式 ,计算值和实验值吻合良好 .  相似文献   

9.
基于GA-BP神经网络的超临界CO2传热特性预测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
超临界二氧化碳(S-CO2)动力循环在能源利用领域中拥有广阔的应用前景,其中超临界CO2的传热特性对其能量转换效率至关重要。开展了超临界CO2在水平小圆管内对流传热实验研究,并通过建立遗传算法优化的BP神经网络模型(GA-BP),对其在不同工况下的传热特性进行预测分析。实验参数范围:系统压力7.5~9.5 MPa,质量流速1100~2100 kg/(m2?s),热通量120~560 kW/m2。实验结果表明,超临界CO2传热系数随流体温度的升高先增大后减小,在拟临界温度附近达到最大值。GA-BP神经网络模型能有效地预测超临界CO2的传热系数,预测数据的决定系数R2为0.99662,超过95%的数据误差位于±10%范围内,平均误差为3.55%,为超临界流体传热预测提供新的思路。  相似文献   

10.
白万金  徐肖肖  吴杨杨 《化工学报》2016,67(4):1244-1250
开展了低质量流速下超临界CO2在水平直管内冷却过程的换热特性的实验研究。实验压力为p=7.5~9.0 MPa,质量流速为G=79.6~358.1 kg·m-2·s-1,流体温度为25.0~50.0℃。分析了质量流速、压力、流体温度对换热的影响,并引入Richardson数阐述浮升力对超临界CO2在水平直管内冷却换热影响。实验结果表明: 传热系数随着质量流速的增加而增大。传热系数峰值点随压力的升高向高温区偏移。当质量流速较小时,传热系数峰值点出现在准临界温度之前,且浮升力作用加大,流体处于混合对流状态。将传热系数的实验值和已有的换热关联式计算值作对比后发现在低质量流速下误差较大,拟合了低质量流速工况的超临界CO2在水平直管内冷却换热的关联式,94%的实验值和拟合关联式误差在±20%范围内。  相似文献   

11.
朱兵国  吴新明  张良  徐进良  刘欢 《化工进展》2019,38(10):4444-4451
在均匀加热条件下,开展超临界压力二氧化碳在压力瞬态下的传热特性实验研究。实验段内径为10.0mm,实验参数范围:压力P=7.58~9.97MPa,热流密度q w=64~256kW/m2,质量流速G=660~893kg/(m2·s)。分析了正常传热和传热恶化条件下,瞬间泄压过程对传热的影响规律。实验结果表明,正常传热工况下,壁温随着压力的减小有降低的趋势,传热系数明显增大;传热恶化发生后壁温迅速上升,对应的传热系数减小传热恶化更加严重,且恶化壁温峰值点向着入口方向移动。最后对实验现象进行了解释,正常传热下壁温降低是由于压力的降低增大了比热容,从而改善了传热。传热恶化发生后,压力的降低减小了拟临界焓值i pc,从而增大了超临界沸腾数SBO,更大的SBO表明膨胀动量力占主导,靠近壁面低密度的vapor-like fluid在不断向外膨胀,从而使得低密度层流体的厚度增加,从而加大了传热热阻,这时壁温升高或者出现更大的恶化。  相似文献   

12.
在均匀加热条件下,开展了超高参数二氧化碳在垂直上升管中的传热特性实验研究。实验段内径为10.0mm,实验参数范围:压力p=8.21~20.6MPa,热流密度q w=95~300kW/m2,质量流速G= 1000~1232.5kg/(m2·s)。分析了入口温度、压力和热流密度对传热的影响规律。实验结果表明,在热流密度、压力和质量流速一定的条件下,入口温度对传热有明显影响,当T in<T pc时,在拟临界温度前壁温出现峰值,达到峰值点随后又逐渐下降,即传热出现了恶化现象。但是当T in>T pc时在同样的工况下,壁温沿着主流焓值单调上升,无明显的壁温峰值出现,这意味着传热恶化只发生在T in<T pc时。在T in>T pc的超临界工况下,压力和热流密度对传热的影响较小,工质遵循单相强制对流换热。将实验数据与选取的典型传热关联式作比较,结果显示,经典的D-B单相湍流对流公式计算的换热系数和壁温已达到了满意的预测精度。  相似文献   

13.
为探究超(超)临界锅炉机组内螺纹管水冷壁的传热特性,在倾角5°~90°的?35 mm×7.75 mm倾斜上升内螺纹管中进行了实验研究,实验参数为压力15~28 MPa,质量流速600~1000 kg?m-2?s-1,热通量300~500 kW?m-2。实验对比了内螺纹管与?25 mm×3 mm光管的壁温特性;讨论了倾斜角度、质量流速和压力的变化对内螺纹管中亚临界、近临界和超临界水传热的影响;拟合了不同倾斜角度下超临界水的传热关联式。结果表明:所用内螺纹管有明显的推迟传热恶化、强化传热的性能;不同倾斜角度的内螺纹管传热特性存在差异;亚临界压力下质量流速对气液两相区传热系数影响很小,近临界和超临界压力下,随质量流速的增加,整体上传热系数增大;压力为15 MPa时的传热系数最大。超临界压力下,随压力的增大,大比热容区的传热系数减小。  相似文献   

14.
垂直上升内螺纹管内流动沸腾传热特性   总被引:4,自引:2,他引:2       下载免费PDF全文
在压力9~22 MPa,质量流速450~2000 kg·m-2·s-1,内壁热负荷200~700 kW·m-2的参数范围内,试验研究了用于1000 MW超超临界锅炉φ28.6 mm×5.8 mm垂直上升内螺纹水冷壁管内汽水流动沸腾传热。研究表明:内螺纹管内壁螺纹的漩流作用可抑制偏离核态沸腾(DNB)传热恶化,内螺纹管在高干度区发生蒸干型(DO)传热恶化。增大质量流速可推迟壁温飞升,壁温飞升幅度随质量流速增大而降低。热负荷越大管壁温越高,随热负荷增大管壁壁温飞升提前,且传热恶化后壁温飞升值增大。随着压力增加,壁温飞升发生干度值减小。内螺纹管汽水流动沸腾传热系数呈π形分布,传热系数峰值出现在汽水沸腾区。文中还给出了亚临界压力区内螺纹管单相区和汽水沸腾区的传热系数试验关联式。  相似文献   

15.
利用实验与数值模拟相结合的方法研究了超临界氮气(SCN2)三维热流场特性,在用实验数据验证数值方法可靠性基础上,分析了压力(3.6~7 MPa)和质量流速[800~1200 kg/(m2?s)]对SCN2对流传热特性的影响,揭示了微通道圆管不同圆周方向上SCN2热流场规律。结果表明:在低压力和高质量流速下,同一轴向位置处,径向内壁温最大值出现在圆管90°处;质量流速越大,内壁温最大值和对流传热系数最小值由圆管180°向90°处发生了转移;当浮升力系数Gr*/Re2>1时,浮升力有利于强化圆管底部区域流体传热能力;基于获得的数据,提出了一个新的适合预测微通道圆管内SCN2对流传热特性的无量纲换热关联式,预测误差小于20%。研究结果为微通道换热器优化设计提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号