首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind data from 10 coastal meteorological stations along the Mediterranean Sea in Egypt have been used for statistical analysis to determine the wind characteristics. It was found that three stations show annual mean wind speed greater than 5.0 m/s. In order to identify the Weibull parameters for all stations two different methods were applied.The methodical analysis for all stations was done for the corrected monthly and annual mean wind power at a height of 10 m, over roughness class 0 (water). The recommended correlation equation was also stated for Mediterranean Sea zone in Egypt. Also the wind power densities for heights of 30–50 m were calculated for all stations. Three of them are the best locations, namely: Sidi Barrani, Mersa Matruh, and El Dabaa, where these contiguous stations have great abundantly wind energy density.A technical assessment has been made of the electricity generation using WASP program for two commercial turbines (300 kW and 1 MW) considering at the three promising sites. The wind turbine of capacity 1 MW was found to produce an energy output per year of 2718 MW h at El Dabaa station, and the production costs was found 2€ cent/kW h.  相似文献   

2.
Wind characteristics have been analyzed based on long-term measured data of monthly mean wind speed of seven meteorological stations along the east coast of Red Sea in Egypt. It was found that the windiest stations (Region A) namely (Zafarana, Abu Darag, Hurghada and Ras Benas) have annual mean wind speeds (7.3, 7.2, 6.4 and 5.5 m/s) at 10 m height, respectively.Numerical estimations using measured wind speeds and frequencies to calculate the two Weibull parameters were carried out and two methods were applied.The methodical analysis for the corrected monthly wind power density at a height of 10 m above ground level, over roughness class 0 (water), for each station was done. The recommended correlation equation was also stated for Red Sea zone in Egypt. Also the corrected annual wind power density at the heights (50–70) m was obtained for all stations. Moreover, calculations show that the four stations in (Region A) have a huge energy potential available (430–1000 W/m2) at 70 m height, while Quseir and Suez stations (Region B) have good wind power density (170–190 W/m2) at 50 m height.A technical and economic assessment has been made of electricity generation from two turbines machines having capacity of (1000 and 600 kW) considered in Regions A & B, respectively, using WASP program. The yearly energy output, capacity factor and the electrical energy cost of kWh produced by the two different turbines in each region were estimated. The production costs of four stations in Region A was found to be less than 2€ cent/kWh and compared with retail tariff.  相似文献   

3.
In this study, wind characteristics were analyzed using the wind speed data collected of the six meteorological stations in Turkey during the period 2000–2006. The annual mean wind speed of the six stations (Erzurum, Elaz??, Bingöl, Kars, Manisa and Ni?de) is obtained as 8.7, 8.5, 5.9, 6.9, 7.4 and 8.0 m/s at 10 m height, respectively. The mean annual value of Weibull shape parameter k is between 1.71 and 1.96 while the annual value of scale parameter c is between 6.81 and 9.71 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of (600 kW, 1000 kW, 1500 kW and 2000 kW). The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

4.
A technical and economic assessment has been made of the generation of electricity using wind turbines at one of the most promising wind sites in Egypt: Hurghada. In this paper, we used wind data recorded over 23 years for this site. The WASP program was used to calculate the values of wind speed frequency for the station, their seasonally values have been estimated and compared with measured data.Weibull parameters and the power law coefficient (n) for all seasons at different heights (10–70 m) has been estimated and used to describe the distribution and behavior of seasonal wind speed and their frequencies at Hurghada. The monthly and annual values of wind potential at a height of 70 m were obtained by extrapolation of the 10 m data from the results of our previous article [Ahmed Shata AS, Hanitsch R. The potential of electricity generation on the east coast of Red Sea in Egypt. Renew Energy 2006;31:1597–615] using the power law.Also, the monthly plant load factor (PLF) has been estimated, which is used to determine the expected annual energy output of a wind energy conversion system (WECS).Variation of annual capacity factor with rated wind speed for 10 different wind turbines has been studied. The lower the rated speed for the WECS of the same height, the higher will be the capacity factor values. The expected electrical energy cost of kWh produced by the wind turbine (Repower MM82) with a capacity of 2 MW considered for Hurghada station was found to be less than 1.5 € cent/kWh.  相似文献   

5.
Wind resource assessment of the Jordanian southern region   总被引:1,自引:0,他引:1  
Eyad S. Hrayshat   《Renewable Energy》2007,32(11):1948-1960
Wind data in terms of annual, seasonal and diurnal variations at Queira, which is located in the southern part of Jordan was studied and analyzed. For this purpose, long-term wind speed data for a period of 12 years (1990–2001) was used. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 6 m/s and more were observed during both the summer months of the year (May–August) and peak hours (1100–1500) of the day. The wind duration availability is discussed as the number of hours during which the wind remained in certain wind speed intervals. The possibility of electricity generation from wind power at Queira was carried out using three different wind energy systems of sizes 100, 22 kW rated power, and a wind farm consisting of 25 small wind turbines; each of 4 kW rated power with hub heights of 20, 30, and 40 m. The energy production analysis showed higher production from the wind farm with a 20 m hub height than the production from the other two wind turbines. Similarly, the cost analysis showed that the lowest generation costs of 1 kWh were obtained for the wind farm compared to the other two wind turbines. The possibility of water pumping using the wind farm was also investigated. The results showed that water pumping using wind turbines is an appropriate alternative for the photovoltaic water pumping in the region.  相似文献   

6.
Wind energy has become a major competitor of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, wind with reasonable speed is not adequately sustainable everywhere to build an economical wind farm. The potential site has to be thoroughly investigated at least with respect to wind speed profile and air density. Wind speed increases with height, thus an increase of the height of turbine rotor leads to more generated power. Therefore, it is imperative to have a precise knowledge of wind speed profiles in order to assess the potential for a wind farm site. This paper proposes a clustering algorithm based neuro-fuzzy method to find wind speed profile up to height of 100 m based on knowledge of wind speed at heights 10, 20, 30, 40 m. The model estimated wind speed at 40 m based on measured data at 10, 20, and 30 m has 3% mean absolute percent error when compared with measured wind speed at height 40 m. This close agreement between estimated and measured wind speed at 40 m indicates the viability of the proposed method. The comparison with the 1/7th law and experimental wind shear method further proofs the suitability of the proposed method for generating wind speed profile based on knowledge of wind speed at lower heights.  相似文献   

7.
This paper presents the first estimate of offshore wind power potential for the central coast of Chile. For this purpose, wind speed data from in-situ stations and ERA-Interim reanalysis were used to simulate wind fields at regional level by means of the Weather Research and Forecasting (WRF) model. Wind field simulations were performed at different heights (20, 30, 40 and 140 m.a.s.l.) and a spatial resolution of 3 × 3 km for the period from February 1, 2006 to January 31, 2007, which comprised the entire series of in-situ data available. The results show an RMSE and r2 of 2.2 m s−1 and 0.55 respectively for the three heights simulated as compared to in-situ data. Based on the simulated wind data, the wind power for the study area was estimated at ∼1000 W m−2 at a height of 140 m.a.s.l. For a typical wind turbine of 8 MW generator, the estimated capacity factor exceeds 40%, with an average annual generation of ∼30 GWh. Offshore wind power in Chile is an emerging renewable energy source that is as yet still under-developed, these estimates help to fill in some of the gaps in our knowledge about Chile's true renewable energy potential.  相似文献   

8.
The aim of this study was to predict the wind energy content over the campus area of Izmir Institute of Technology. The wind data were collected at 10 and 30 m mast heights for a period of 16 months. Mean wind speeds were 7.03 and 8.14 m/s at 10 and 30 m mast heights, respectively. The ‘WAsP’ and ‘WindPRO’ softwares were used for the wind statistics and energy calculations. Suitable sites were selected according to the created wind power and energy maps. Wind turbines with nominal powers between 600 and 1500 kW were established for annual energy production calculations and best fitted ones were used for the micrositting.  相似文献   

9.
The wind speed distribution and wind energy potential are investigated in three selected locations in Oyo state using wind speed data that span between 12 and 20 years measured at 10 m height. In addition, the performance of selected small to medium size wind turbines in these sites were examined. The annual energy output and capacity factor for these turbines were determined. It was found that the monthly mean wind speeds in Oyo state ranges from 2.85 m/s to 5.20 m/s. While the monthly mean power density varies between 27.08 W/m2 and 164.48 W/m2, while the annual mean power density is in the range of 67.28 W/m2 and 106.60 W/m2. Based on annual energy output, wind turbines with cut-in wind speed of about 2.5 m/s and moderate rated wind speeds will be best suited for all the sites.  相似文献   

10.
The wind characteristics of six locations in the State of Kuwait have been assessed. The annual average wind speed for the considered sites ranged from 3.7 to 5.5 m/s and a mean wind power density from 80 to 167 W/m2 at standard height of 10 m. The Weibull parameters and power density of each station have been determined using Weibull distribution. The wind data at heights 15, 20, 25 and 30 m were obtained by extrapolation of the 10 m data using the Power-Law. The potential wind energy at different heights was estimated using Weibull parameters. Maximum power density is found at 30 m height which varies between 130 and 275 W/m2 with 70% increase from the standard height indicating fairly potential wind energy especially in the northern part of the country. The highest potential wind power was found during the summer season which is the peak demand season of electricity in Kuwait.  相似文献   

11.
Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8-7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.  相似文献   

12.
In this paper, the hourly measured wind speed data for years 2003–2005 at 10 m, 30 m and 60 m height for Kingdom of Bahrain have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 30 m and 60 m. Weibull distribution parameters have been estimated and compared annually and on monthly bases using two methods; the graphical method and the another method, designated in this paper as approximated method, which depends on the standard deviation and average wind speed. The maximum power density for 10 m, 30 m and 60 m heights were found to be 164.33 W/m2, 624.17 W/m2 and 1171.18 W/m2 in February, respectively while the minimum power density were 65.33 W/m2, 244.33 W/m2 and 454.53 W/m2 in October, respectively. The average annual wind power density was found to be 114.54 W/m2 for 10 m height, 433.29 W/m2 for 30 m height and 816.70 W/m2 for 60 m height. Weibull probability function, using Weibull parameters estimated from the approximated method, has shown to provide more accurate prediction of average wind speed and average power density than the graphical method. In addition, the site matching of wind turbine generators at 30 m and 60 m heights has been investigated by estimating the capacity factors of various commercially available wind turbines generators. The monthly and annual variation of capacity factors have been studied to ensure optimum selection of wind turbine generators.  相似文献   

13.
Kutubdia is one of the coastal islands in Bangladesh. The wind speed data at the wind monitoring station of Bangladesh Meteorological Department (BMD), Kutubdia, located in a built-up area, appears to be low, but at another location, near the seashore, Bangladesh Centre for Advanced Studies (BCAS) finds that the wind energy availability should be reasonably high. Considering the surface roughness, obstacle condition and terrain information of the island, a micro-scale prediction has been done using (100×100 m2) grid cells in the Wind Atlas Analysis and Application Program (WAsP) to develop monthly and annual wind atlas and also a wind resource map which shows that at 50 m height, the annual wind speed over Kutubdia coast varies from 5.1 to 5.8 m/s. Southern and Eastern sides of Kutubdia appear to be promising for wind electricity generation using large turbines where wind power density at a height of 50 m or higher is found to be above 200 W/m2 annually over the year September 1996 to August 1997. It is found that at 30 m height, the coast side of Kutubdia should be sustainable for small turbines.  相似文献   

14.
The analysis of recently collected wind data at five sites in Saudi Arabia namely, Dhulum, Arar, Yanbu, Gassim and Dhahran is presented. The five sites represent different geographically and climatologically conditions. The data collected over a period spanned between 1995 and 2002 with different collection periods for each site. Daily, monthly and frequency profiles of the wind speed at the sites showed that Dhulum and Arar sites have higher wind energy potential with annual wind speed average of 5.7 and 5.4 m/s and speeds higher than 5 m/s for 60 and 47% of the time, respectively. The two sites are candidates for remote area wind energy applications. The costal site's, i.e. Yanbu and Dhahran wind speed data indicated that the two sites have lower annual wind speed averages and wind blows at speed higher than 5 m/s during afternoon hours. That makes the two sites candidates for grid connected wind systems for electrical load peak shaving. The data of Gassim site showed that the site has the lowest wind energy potential compared to the others. The annual energy produced by a Nordex N43 wind machine is estimated to be 1080, 990, 730, 454 and 833 MWh for Dhulum, Arar, Yanbu, Gassim and Dhahran, respectively. The analysis showed that the estimated annual energy produced by the machine based on 10 min averaged data is 2.5% higher than the estimated energy based on 30 min averaged data.  相似文献   

15.
The objective of the present work is to study the performance of cup-anemometers installed at different heights on a 40 m tall wind mast over an approximate period of 55 months between September 13, 2005 and May 09, 2010. The performance of co-located cup anemometers has been analyzed by calculating the annual mean, median, standard deviation, tower distortion factor (TDF), scatter factor (SCF), and developing linear correlations between the co-located sensors. The study showed that the performance of sensors did not deteriorate much with time but slightly higher values of TDF were obtained with passage of time. The annual mean wind speeds, the median values and the standard deviations were almost the same during different years and were comparable with co-located sensors at each height. The SCF values were found to be increasing with decreasing height of wind speed measurements. Finally, a total of 16 wind turbines of 2 MW rated capacity each were used to find the most suitable wind turbine for the location under investigation.  相似文献   

16.
Reanalysis data are attractive for wind-power studies because they can offer wind speed data for large areas and long time periods and in locations where historical data are not available. However, reanalysis-predicted wind speeds can have significant uncertainties and biases relative to measured wind speeds. In this work we develop a model of the bias and uncertainty of CFS reanalysis wind speed than can be used to correct the data and identify sources of error. We find the CFS reanalysis data underestimate wind speeds at high elevations, at high measurement heights, and in unstable atmospheric conditions. For example, at a site with an elevation of 500 m and hub height of 80 m, a CFS reanalysis wind speed of 8 m/s is 0.2 m/s higher to 1.3 m/s lower than the measured wind speed. We also find a seasonal bias that correlates with surface roughness length used by the reanalysis model during the spring season. The corrections we propose reduce the average bias of reanalysis wind speed extrapolated to hub height to nearly zero, an improvement of 0.3–0.9 m/s. These corrections also reduce the RMS error by 0.1–0.4 m/s, a small improvement compared to the uncorrected RMS errors of 1.5–2.4 m/s.  相似文献   

17.
The average wind speed and wind power density of Taiwan had been evaluated at 10 m, 30 m and 50 m by simulation of mesoscale numerical weather prediction model (MM5). The results showed that wind energy potential of this area is excellent. Taiwan has offered funds to encourage the founding of offshore wind farms in this area. The purpose of this study is to make a high resolution wind energy assessment for the offshore area of Taiwan west coast and Penghu archipelago by using WAsP. The result of this study has been used to the relative financial planning of offshore wind farm projects in Taiwan. The basic inputs of WAsP include wind weather data and terrain data. The wind weather data was from a monitoring station located on a remote island, Tongi, because that all of weather stations in the area of Taiwan west coast are affected by urbanization. SRTM was selected to be used as terrain data and downloaded from CGIAR-CSI for voids problem. The coverage of considered terrain area in this assessment work is about 300 km × 400 km that made some difficulties to run wind energy assessment of the whole area with a high resolution of 100 m. So the interested area of this study is divided into 19 areas for the wind energy assessment and mapping. The assessment results show the Changhua area has best wind energy potential in the area of Taiwan west coast which power density is above 1000 W/m2 height and the areas of Penghu archipelago are above 1300 W. These results are higher than the expected from NWP. 180 of 3 MW wind turbines were used in the study of micro sitting in the Changhua area.The type and number of the wind turbines and the layout of the wind farm is similar to the prior study of Taipower Company for demonstrating the reliability of this study. The assessment result of average net annual energy production (AEP) of the wind farm is about 11.3 GWh that is very close to the prior study. The terrain effect is also studied. The average net annual energy production will decrease about 0.7 GWh if the wind turbines were moved eastward 3600 m closer to the coast because of terrain effect. As the same reason, the average net annual energy production would be increased to 11.392 GWh if the wind farm is moved westward 3600 m away from the coast.  相似文献   

18.
In this paper, five typical regions of Algeria where wind is strong enough are selected. These regions usually intended for traditional agriculture are, centred around the towns of Guelma, El Oued, Tindouf, Touggourt and Tamanrasset. To make wind energy conversion available as an alternative energy source for the populations living in such countries, nine types of small and medium wind turbines constructed by American and European manufacturers are studied for their suitability. To account for the wind variations with height, four possible heights of the pylon holding the turbines are considered: 10, 20, 40 and 60 m. In each of the five locations and at each pylon height, wind energy converted by the turbines, is cumulated over the year and computed. Depending on the site and their size, most of these turbines are found to produce about 1000–10,000 MWh of electricity per year at 60 m of altitude and can easily satisfy the electricity need in irrigation and its household applications in rustic and arid regions. A quick glance of the results of the above computation shows that the choice of pylons of 20 m height yields a trade-off between the production of electrical energy and the requirements of economy. Owing to the sporadic wind variations, wind energy conversion systems can only be used as an auxiliary source. In particular, these systems can advantageously be coupled to stand-alone photovoltaic conversion systems in remote locations or connected to the electric mains in urban zones.  相似文献   

19.
The observed wind at a given site varies continuously as a function of time and season, increasing hub heights, topography of the terrain, prevailing weather condition etc. The quality of wind resource is one of the important site factors to be considered when assessing the wind potential of any location for any energy project. In this study, two wind energy analysis techniques are presented: the use of direct technique where the electrical power outputs of the wind turbines at a time t are estimated using the turbine power curve(s) and the use of statistical-based technique where the power outputs are estimated based on the developed site power curve(s). The wind resource assessment at Darling site is conducted using a 5-min time series weather data collected on a 10 m height over a period of 24 months. Because of the non-linearity of the site's wind speed and its corresponding power output, the wind resources are modeled and the developed site power curve(s) are used to estimate the long term energy outputs of the wind turbines for changing weather conditions. Three wind turbines rating of 1.3 MW, 1.3 MW and 1.0 MW were selected for the energy generation based on the gauged wind resource(s) at 50, 60 and 70 m heights, respectively. The energy outputs at 50 m height using the 1.3 MW WT were compared to the energy outputs at 60 m to determine the standard height for utility scale energy generation at this site. An additional energy generation of 190.71 MWh was available by deploying the same rated turbine at a 60 m height. Furthermore, comparisons were made between the use of turbine and site power curve for wind energy analysis at the considered heights. The results show that the analysis of the energy outputs of the WTs based on the site power curve is an accurate technique for wind energy analysis as compared to the turbine power curve. Conclusions are drawn on the suitability of this site for utility scale generation based on the wind resources evaluation at different heights.  相似文献   

20.
An evaluation of wind energy potential at Kati Bandar,Pakistan   总被引:1,自引:0,他引:1  
As a developing nation of energy-starved people, Pakistan urgently needs new sources of affordable, clean energy. Wind energy is potentially attractive because of its low environmental impact and sustainability. This work aims to investigate the wind power production potential of sites in south-eastern Pakistan. Wind speed data measured over a one-year period at a typical site on the south-east coast of Pakistan are presented. Frequency distributions of wind speed and wind power densities at three heights, seasonal variations of speed, and estimates of power likely to be produced by commercial turbines are included. The site investigated is found to be a class 4 wind power site with annual average wind speed of 7.16 m/s and power density of 414 W/m2 at 50 m height. The site is, therefore, likely to be suitable for wind farms as well as small, stand-alone systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号