首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用电化学测量、交流阻抗技术、扫描电镜观察和能谱分析等实验方法,研究了316L不锈钢在铁氧化菌(IOB)溶液中的腐蚀电化学行为,分析了炼油厂冷却水系统微生物腐蚀的特征及机制,结果表明,在含有IOB溶液中的自腐蚀电位(Ecorr)、点蚀电位(Epit)和极化电阻(Rp)均随浸泡时间的增加呈现出降-升-降的变化趋势;在含有IOB溶液中的腐蚀速率均大于在无菌溶液中;IOB的生长代谢活动及其生物膜的完整性和致密性影响了316L不锈钢表面的腐蚀过程,使不锈钢表面的钝化膜层腐蚀破坏程度增加,加速了316L不锈钢的点蚀.  相似文献   

2.
基于点蚀的316L不锈钢在酸性气田环境中的适应性评价   总被引:3,自引:1,他引:2  
鲍明昱  任呈强  郑云萍  杜磊  鲜宁  姜放  郭小阳 《材料导报》2016,30(17):10-15, 35
国内外酸性气田的开发使腐蚀环境越来越苛刻,为满足气液混输的工艺要求,发展了耐蚀合金/碳钢的双金属复合管技术。316L不锈钢被广泛用于双金属管的内衬,在含H_2S和CO_2环境中腐蚀速率很低,然而在高含Cl-的溶液中,316L不锈钢容易出现点蚀而诱发集输管线失效,为此,就316L不锈钢在酸性气田集输环境中的点蚀进行评述。讨论了影响316L不锈钢点蚀的材质因素,Mn和Fe的硫化物及Mg、Al、Ca的氧化物等两种夹杂物均能促进钝化膜的溶解而引起点蚀;分析了316L不锈钢点蚀的H_2S、CO_2、温度、Cl-浓度和pH值等环境的适应性条件,发现H_2S环境比CO_2环境更容易发生点蚀,H_2S和CO_2对点蚀发生存在协同机制,温度升高、Cl-浓度增加和酸性介质均会增加316L不锈钢点蚀的敏感性。为进一步优化选材原则,需重点加强环境因素的协同机制、环境适应性的边界条件、点蚀发展的动力学以及新的标准研究。  相似文献   

3.
目前产于高氮不锈钢的研究多集中于理论基础、制造工艺和力学性能等方面,有关耐蚀性方面的研究有限。通过循环极化、Mott-Schottky曲线以及电化学阻抗(EIS)等方法,研究了Cr23Mo1N奥氏体不锈钢(高氮钢,HNSS)和316L不锈钢在Cl-溶液中的耐点蚀性能。结果表明:与316L不锈钢相比,高氮钢具有更正的自腐蚀电位,更小的维钝电流密度。阻抗谱表明高氮钢的钝化膜比316L更加稳定,且电荷转移电阻更大。Mott-Schottky曲线表明高氮钢的点缺陷施主浓度比316L不锈钢低一个数量级,钝化膜的绝缘性更好。循环极化曲线表明高氮钢的点蚀敏感性更小,钝化膜的自修复能力更强,耐蚀性能更加优越。  相似文献   

4.
Pitting corrosion behavior of stainless steel 316L in the presence of aerobic and anaerobic bacteria isolated from cooling water system in oil refinery was investigated using open circuit potential measurement, electrochemically impedance spectroscopy, scanning electron microscopy examinations, and energy dispersive spectrum analysis. The results show the corrosion potential (E cor) and polarization resistance (R p) decrease in the presence of sulfate-reducing bacteria (SRB), iron-oxidizing bacteria (IOB), and a combination of SRB and IOB, in comparison with those observed in the sterile medium for the same exposure time. The presence of SRB demonstrated higher corrosion rates than IOB. The combination of SRB and IOB created the highest corrosion rate. The metabolic activity of bacteria and the integrality and compactness of biofilm influenced the pitting corrosion process, increased the corrosion damage degree of the passive film, and accelerated the pitting corrosion. It is suggested that SRB and IOB in influencing the pitting corrosion of 316L SS is highlighted. The text was submitted by the authors in English.  相似文献   

5.
The beneficial effect of nitrogen alloying on the corrosion resistance of stainless steels has been attributed to the increase of the local pH within the active sites and the enhanced repassivation of the metastable pits. In order to better understand the effect of nitrogen alloying, in situ capacitance measurements and potentiostatic polarization were conducted for 316L and 316LN stainless steels with different nitrogen contents in deaerated 0.1 M Na2SO4 and 0.1 M NaCl aqueous solutions. The Mott–Schottky plots obtained from the in situ capacitance measurements offered information on the donor concentration and the thickness of the space charge region within the passive film. The metastable pitting susceptibility was investigated by performing potentiostatic polarization tests. The results showed that nitrogen alloying decreased the donor densities and the number of metastable pits, while the absorption of chloride ions on the passive film had the opposite effect. Auger electron spectroscopy (AES) analysis demonstrated that nitrogen alloying enriched the chromium within the passive film. The relationship between the semiconducting properties of the passive film and the metastable pitting susceptibility was elucidated.  相似文献   

6.
热网二级换热站一般采用板式换热器,在其使役过程中不锈钢换热板一旦出现腐蚀穿孔,不但影响一次水水质,而且干扰换热器稳定运行,甚至影响居民供热,因此阐明换热板发生点蚀的临界条件对于科学设定水质控制标准和防止点蚀发生具有重要意义。为此,通过材料化学分析、XRD、SEM及电化学测试等方法对这一问题进行研究。结果表明:在65℃条件下,304不锈钢点蚀的临界Cl;浓度为125 mg/L,316L不锈钢点蚀的临界Cl;浓度为230 mg/L;不锈钢表面一旦形成垢层,表面会发生局部酸化,此时不锈钢更容易发生点蚀;运行过程中为了防止不锈钢换热板点蚀,不仅要严格控制循环水中Cl;浓度,还应防止换热板表面结垢或附着腐蚀产物。  相似文献   

7.
随着20/316L双金属管在油气生产中的推广应用,关于内衬316L不锈钢的腐蚀失效问题日益突出,尤其是条件苛刻的酸性集输环境下,目前相关研究不多.利用扫描电镜(SEM)、能谱仪(EDS)等测试手段对20/316L双金属管在含H2S-Cl-的酸性集输环境中出现的腐蚀失效问题进行了系统分析,探讨了腐蚀失效的原因.结果表明:20/316L双金属管腐蚀类型为局部腐蚀,主要分布于内衬管316L的底部.腐蚀失效的主要原因是腐蚀介质中存在高浓度的H2S与Cl-,共同促进了钝化膜的破裂与点蚀的发展.当存在较高浓度的H2S与Cl-时,钝化膜薄弱处与电位较低的非金属夹杂物处易发生钝化膜的破裂与金属基体的快速溶解而成为点蚀源,形成点蚀.  相似文献   

8.
The electrochemical polarization behaviour of the austenitic Fe-8.25 Al-29.95 Mn-0.85 C and Fe-9.33 AI-25.94 Mn-1.45 C alloys, either solution-annealed and/or age-treated, was investigated in 3.5 wt% NaCl solution. Potentiodynamic polarization tests showed that these alloys passivated with difficulty and had much higher anodic passive current densities than that of the conventional austenitic 316 stainless steel (SS). The susceptibility to pitting corrosion of these alloys under open-circuit potential conditions was also studied in 6% FeCl3 solution. Metallographical examination indicated that pitting and general corrosion occurred on the specimen surfaces. The corrosion rates of these alloys were about one order of magnitude higher than that of the AlSl 316 SS. In general, the corrosion resistances of the Fe-Al-Mn alloys studied were inferior to that of the conventional stainless steel.[/p]  相似文献   

9.
Corrosion behavior and chemical structure of the passive film of a newly developed 200 series austenitic stainless steel (216L) were studied in sulfuric acid (H2SO4) and compared with 316L. From potentiodynamic polarization studies it was found that the corrosion behavior of 216L closely follows that of 316L. The breakdown of passivity was evaluated by addition of sodium chloride (NaCl). The immersion tests revealed that the corrosion rate of 216L in various concentrations of H2SO4 at ambient temperature is equivalent to 316L. X-ray photoelectron spectroscopy (XPS) analysis of the passive film formed on 216L revealed enrichment of Cr ions on the surface while Mo and N compounds were also present. Ni and Mn ions were conspicuous by their absence in the passive film.  相似文献   

10.
Crevice corrosion studies were carried out on nitrogen-bearing types 304, 316 and 317 austenitic stainless steels (SS) by a potentiodynamic anodic polarisation method in an acidic chloride medium. A special all-glass crevice assembly was used for providing reproducible crevice effects on the surface of the test specimen. The results indicated that the increase in nitrogen content improved the crevice corrosion resistance of the alloys by decreasing the active dissolution, and increasing both passive film stability and the potential at which crevice attack was stable. This was very significant for 304 and 316 SS alloys in comparison with 317 SS alloys. The combined influence of nitrogen and molybdenum was found to be very significant in providing high crevice corrosion resistance for 317 SS alloys. Optical microscopic observation revealed severe crevice attack on types 304 and 316 SS alloys compared to mild crevice attack on type 317 alloys. Based on the results of the present investigation a possible mechanism by which nitrogen addition improved the crevice corrosion resistance is discussed.  相似文献   

11.
为了研究316L不锈钢自然点蚀的生长规律,发展基于声发射技术的小孔腐蚀监测方法,利用声发射技术原位研究了316L奥氏体不锈钢在pH=1.0和中性(pH=6.7)的3.5%NaCl溶液中的自然点蚀状况,同时监测了开路电位E_(OCP);通过扫描电镜对试验后样品的表面形貌进行表征,并通过Matlab平台对声发射信号进行聚类分析。结果表明:316L奥氏体不锈钢的自然点蚀具有不同的孕育周期,声发射信号的获取跟E_(OCP)的变化具有较好的对应关系。在点蚀快速发展阶段,声发射信号具有较高的绝对能量。在Matlab平台上建立了一套信号处理程序,并对声发射信号进行重新定义,对处理后的信号进行声发射信号参数分析,得到了3类较好的声发射信号聚类,来源于不同腐蚀现象或阶段。其中,在点蚀的快速发展阶段主要以高持续时间高计数和高持续时间低计数2类谐振信号为主。  相似文献   

12.
The pitting corrosion, crevice corrosion and accelerated leaching of iron, chromium and nickel of super-ferritic and duplex stainless steels, and for effective comparison the presently used 316L stainless steel, have been studied in an artificial physiological solution (Hank's solution) by the potentiodynamic anodic polarization method. The results of the above studies have shown the new super-ferritic stainless steel to be immune to pitting and crevice corrosion attack. The pitting and crevice corrosion resistances of duplex stainless steel were found to be superior to those of the commonly used type 316L stainless steel implant materials. The accelerated leaching study conducted for the above alloys showed very little tendency for the leaching of metal ions when compared with 316L stainless steel. Thus the present study indicated that super-ferritic and duplex stainless steels can be adopted as implant materials due to their higher pitting and crevice corrosion resistance.  相似文献   

13.
The paper discusses the pitting corrosion behavior of AISI (American iron and steel institute) 316L stainless steel in aerated chloride solutions (0.1–2 M NaCl) at 25, 50 and 80 °C using potentiodynamic polarization technique. A comparison is made with CO2-saturated chloride solutions. The results have revealed that pitting potential decreased in a logarithmic relationship with the chloride concentration, and decreased linearly with temperature. The influence of CO2 on the chloride pitting of AISI 316L stainless steel is quite complex and found to be dependent on chloride concentration and test temperature. At 25 °C the presence of CO2 appears to have insignificant effect on Ep irrespective of chloride concentration. As the temperature is raised to 50 or 80 °C the additions of CO2 has caused marked negative shifts in pitting potential. The detrimental effect of CO2 increases with NaCl concentration and temperature. The results indicate that pitting potential (Ep) is influenced by a synergy between chloride, CO2 and temperature, and that this synergy depends on the chloride concentration and test temperature.  相似文献   

14.
A mid country textile mill submitted a set of 316L stainless steel heat exchanger plates of its power generation system with primary and secondary loop water samples to investigate the cause of frequent perforation and fouling at open circuit cooling water side. The detailed study was carried out to determine the actual system fault which included chemical analysis of water samples, metallurgical and electrochemical testing of 316L plates in the provided water samples. It was evaluated that chloride contents in the open circuit feed water and non-expert approach to understand and control of system parameters were the root cause of this failure. The electrochemical cyclic polarization and potentiostatic test results confirmed the susceptibility of 316L SS plates to severe pitting corrosion in CT feed, and CT bleed water than auxiliary and engine jacket water due to high level of chloride contents.  相似文献   

15.
The aim of this work is to investigate the corrosion resistance and biocompatibility of three kinds of Fe based bulk metallic glasses (BMGs), Fe41Co7Cr15Mo14C15B6Y2 (BMG1), (Fe44Cr5Co5Mo13Mn11C16B6)98Y2 (BMG2), and Fe48Cr15Mo14C15B6Er2 (BMG3) by electrochemical measurements and indirect contact cytotoxicity assays, respectively. In comparison with 316 L SS biomedical steel, Fe based BMGs show better corrosion resistance in both simulated body fluids (Hank's solution and artificial saliva). The OCP curves show that the passive film on the Fe based BMG surfaces is quite stable, like 316 L SS. The corrosion current densities obtained from the anodic polarization curves from the lowest to highest are as follows: BMG3 < BMG1 < BMG2 < 316 L SS. The EIS analysis indicates that the Fe Based BMGs have larger polarization resistance value than that of 316 L SS except for BMG2 in artificial saliva. The pitting corrosion potentials of Fe based BMGs are much higher than that of the 316 L SS, resulting in very few ions releasing into the electrolytes while a significant amount of Ni and Fe ions release was found for 316 L SS under the same condition. The indirect cytotoxicity results suggest that all three Fe based BMG extracts have no cytotoxicity to L929 and NIH3T3 cells. All these results demonstrate that Fe based BMGs will open up a new path for the biomedical applications, especially in dental implantology.  相似文献   

16.
Effects of chloride ion on decomposition of ternary nitrate and corrosion behaviors of 316 stainless steel (316 SS) were studied by electrochemical corrosion tests in molten salt. Chemical composition and morphology of the corrosion products were analyzed using x-ray diffraction and scanning electron microscopy equipped with energy disperse spectroscopy. Composition analysis for molten salt combined with morphology analyses of corrosion layer showed that presence of chlorine ions slowed down decomposition of ternary nitrate and increased corrosion rate of stainless steel markedly. The polarization curve obtained indicated that the corrosion current density increased from 3.02 mA ⋅ cm−2 to 8.76 mA ⋅ cm−2 with the addition of 10 % NaCl. Electrochemical impedance spectroscopy indicated a decrease in charge-transfer resistance of the double layer between 316 SS and ternary Nitrate containing 10 % NaCl, resulting in a decreased corrosion resistance of 316 SS.  相似文献   

17.
Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells.  相似文献   

18.
Abstract

The influence of laser surface alloying (LSA) with Cr and Cr + Ni on the corrosion behaviour of type 304L stainless steel (SS) was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in chloride (0·5M NaCl) and acidic (1 N H2SO4) media. Surface alloying was carried out by laser cladding type 304L SS substrate with premixed powders of AISI type 316L SS and the desired alloying elements. The results indicated that Cr surface alloyed specimen exhibited a duplex (γ + α) microstructure with Cr content of ~24 wt-%, whereas Cr + Ni surface alloyed specimen was associated with austenitic microstructure with Cr and Ni contents of ~22 wt-% each. The potentiodynamic polarisation results in chloride solution indicated that LSA with Cr + Ni considerably enhanced the pitting corrosion resistance compared with LSA with Cr alone. In acidic media, such beneficial effects were not observed. Electrochemical impedance spectroscopy results showed an increase in semicircle arc for both chloride and acidic media for both Cr and Cr + Ni clad samples indicating improvement in the oxide film stability compared with untreated specimen. The polarisation resistance was higher and capacitance values of the laser clad specimen were lower than those in the untreated specimen. The microstructural changes and compositional variations produced by LSA are correlated to the corrosion behaviour.  相似文献   

19.
Surgical grade stainless steel (316L SS) is one of the widely used implant material in orthopedic surgeries. But often the release of metal ions is evidenced from the implants and subsequently a second surgery is required to remove the implant material. One way to control this release of metal ions is to coat the implant material with a biocompatible material like hydroxyapatite. In this paper we have reported a successful coating of hydroxyapatite over borate passivated 316L SS by a dip coating method. The coatings were characterized by electrochemical techniques such as potentiodynamic polarization, electrochemical impedance and cyclic voltammetry (CV). Also X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies were performed to confirm the quality of the coatings. Results of accelerated leach out characteristics by inductively coupled plasma–atomic emission spectroscopy (ICP–AES) and the evaluation of shear strength are also presented to support the corrosion resistant nature of the coatings. The enhanced bio-resistivity of the as-formed HAP coatings on passivated 316L SS is attributed to the protective passive layer formed by borate buffer solution at selected potentials.  相似文献   

20.
The laser surface treatment of stainless steel (SS) 316L, an important alloy for biomedical applications, was used to improve its corrosion and wear-corrosion resistance in bio-environment. Microstructural and X-ray diffraction (XRD) pattern analysis showed presence of an austenitic phase in both untreated and laser-treated SS316L. Laser melting produced homogenized and refined microstructure on the surface with higher hardness (143–171 HV) compared to untreated SS316L (131 HV). Increase in intensity of γ (200) peaks in XRD pattern for laser-treated (>800 W) SS316L indicated possible crystallographic orientation along γ (200) plane. Passive currents were reduced to <2.8 μA/cm2 and pitting potentials was increased to >+344 mV for samples laser surface treated at greater than 1200 W. The volume-loss and wear-rate of laser-treated SS316L were significantly reduced compared to untreated sample. Abrasive wear was the main wear mechanism for both untreated and laser surface treated SS316L. Wear particles/debris were found to be cold welded on the surface of SS316L and showed brittle cracking with further wear-straining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号