首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
5.
Since the report of the first diketopyrrolopyrrole (DPP)‐based polymer semiconductor, such polymers have received considerable attention as a promising candidate for high‐performance polymer semiconductors in organic thin‐film transistors (OTFTs). This Progress Report summarizes the advances in the molecular design of high‐mobility DPP‐based polymers reported in the last few years, especially focusing on the molecular design of these polymers in respect of tuning the backbone and side chains, and discussing the influences of structural modification of the backbone and side chains on the properties and device performance of corresponding DPP‐based polymers. This provides insights for the development of new and high‐mobility polymer semiconductors.  相似文献   

6.
7.
While the search for 2D organic semimetallic Dirac materials displaying, like graphene, a Dirac cone at the Fermi level remains active, attention is also being paid to the quantum phase transition from semimetal to antiferromagnet. Such a transition in graphene‐like materials is predicted based on theoretical investigations of the 2D honeycomb lattice; it occurs (within a Hubbard model) when the on‐site electron–electron Coulomb repulsion (U) is much larger than the nearest‐neighbor inter‐site electronic coupling (t). Here, monomers carrying long‐lived radicals are considered and used as building blocks to design 2D hexagonal π‐conjugated covalent organic frameworks (COFs). Both the nonmagnetic semimetallic phase and magnetically ordered phases are evaluated. It is found that the electronic coupling between adjacent radical centers in these COFs is more than an order of magnitude smaller than in graphene while the on‐site Coulomb repulsion is reduced to a lesser extent. The resulting large U/t ratio drives these COFs into the antiferromagnetic side of the phase diagram. This work provides a first theoretical evidence of the realization of an antiferromagnetic Mott insulating phase in 2D π‐conjugated COFs and allows a strategy to achieve quantum phase transitions from antiferromagnet to spin liquid and to semimetal to be outlined.  相似文献   

8.
9.
10.
With an indenoindene core, a new thieno[3,4‐b ]thiophene‐based small‐molecule electron acceptor, 2,2′‐((2Z,2′Z)‐((6,6′‐(5,5,10,10‐tetrakis(2‐ethylhexyl)‐5,10‐dihydroindeno[2,1‐a]indene‐2,7‐diyl)bis(2‐octylthieno[3,4‐b]thiophene‐6,4‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile ( NITI ), is successfully designed and synthesized. Compared with 12‐π‐electron fluorene, a carbon‐bridged biphenylene with an axial symmetry, indenoindene, a carbon‐bridged E ‐stilbene with a centrosymmetry, shows elongated π‐conjugation with 14 π‐electrons and one more sp3 carbon bridge, which may increase the tunability of electronic structure and film morphology. Despite its twisted molecular framework, NITI shows a low optical bandgap of 1.49 eV in thin film and a high molar extinction coefficient of 1.90 × 105m ?1 cm?1 in solution. By matching NITI with a large‐bandgap polymer donor, an extraordinary power conversion efficiency of 12.74% is achieved, which is among the best performance so far reported for fullerene‐free organic photovoltaics and is inspiring for the design of new electron acceptors.  相似文献   

11.
π‐Conjugated molecules are interesting components to prepare fluorescent nanoparticles. From the use of polymer chains that form small aggregates in water to the self‐assembly of small chromophoric segments into highly ordered structures, the preparation of these materials allows to develop systems with applications as sensors or biolabels. The potential functionalization of the nanoparticles can lead to specific probing. This progress report describes the recent advances in the preparation of such emittive organic nanoparticles.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Nonfullerene organic solar cells (NFOSCs) are attracting increasing academic and industrial interest due to their potential uses for flexible and lightweight products using low‐cost roll‐to‐roll technology. In this work, two wide bandgap (WBG) polymers, namely P(fTh‐BDT)‐C6 and P(fTh‐2DBDT)‐C6, are designed and synthesized using benzodithiophene (BDT) derivatives. Good oxidation stability and high solubility are achieved by simultaneously introducing fluorine and alkyl chains to a single thiophene (Th) unit. Solid P(fTh‐2DBDT)‐C6 films present WBG optical absorption, suitable frontier orbital levels, and strong π–π stacking effects. In addition, P(fTh‐2DBDT)‐C6 exhibits good solubility in both halogenated and nonhalogenated solvents, suggesting its suitability as donor polymer for NFOSCs. The P(fTh‐2DBDT)‐C6:3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(5‐hexylthienyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene (ITIC‐Th) based device processed using chlorobenzene/1,8‐diiodooctane (CB/DIO) exhibits a remarkably high power conversion efficiency (PCE) of 11.1%. Moreover, P(fTh‐2DBDT)‐C6:ITIC‐Th reaches a high PCE of 10.9% when processed using eco‐friendly solvents, such as o‐xylene/diphenyl ether (DPE). The cell processed using CB/DIO maintains 100% efficiency after 1272 h, while that processed using o‐xylene/DPE presents a 101% increase in efficiency after 768 h and excellent long‐term stability. The results of this study demonstrate that simultaneous fluorination and alkylation are effective methods for designing donor polymers appropriate for high‐performance NFOSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号