首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this report, the chemical activation of mesoporous carbon derived from mesoporous polymer is used to prepare N-doped carbon materials with high surface area and narrow pores size distribution. The porous carbons derived from the activation of mesoporous carbon generally possess high surface area up to 2400 m2 g−1 and narrow micropores/super-micropore size distribution and exhibit H2 uptake capacity of up to 4.8 wt% at −196 °C and 20 bar and CO2 sorption capacity of up to 3.7 mmol g−1 at 25 °C and 1 bar. The measured isosteric heat of adsorption for H2 sorption is 10 kJ mol−1 and 58 kJ mol−1 for CO2 sorption, indicating a strong interaction between the carbon surface and adsorbed hydrogen and carbon dioxide respectively.  相似文献   

2.
Nanoporous (styrene–divinylbenzene)-based ion exchange resin-based carbons (MPCs) were prepared by MgO-templating synthesis and activated by KOH. MPCs were prepared from a (styrene–divinylbenzene)-based ion exchange resin by the carbonization of a mixture with Mg gluconate at 900 °C. And then, the prepared MPCs were treated with KOH at KOH/MPCs ratios ranging from 0.5 to 4 at 800 °C. Low KOH/MPCs ratios (KOH/MPCs ratio = 1) tended to favor the formation of micropores, whereas higher KOH/MPCs (KOH/MPCs ratio = 4) led to the formation of mesopores. The treated MPCs with a KOH/MPCs ratio = 1 exhibited the best CO2 adsorption value of 266 mg g−1 at 1 bar. However, the treated MPCs with a KOH/MPCs ratio = 3 exhibited the best CO2 adsorption value of 1385 mg g−1 at 30 bar. This result indicated that the CO2 adsorption capacity of nanoporous carbons attributed to the mesopore volume fraction at higher pressure.  相似文献   

3.
Nanoporous carbons were synthesized by chemical vapor deposition using furfuryl alcohol/butylene as a carbon source and zeolite Y as a hard template (ZYC). The ZYC were characterized by PXRD, N2 sorption, and SEM. The carbon materials exhibited predominant microporosity, and the specific surface area increased from 2563 to 3010 m2 g−1 as the pyrolysis temperature was raised from 800 to 1000 °C. ZYC prepared at 1000 °C showed a CO2 adsorption capacity of 986 mg g−1adsorbent at 40 bar 298 K, which surpasses the capacities of commercial carbons and mesoporous carbon CMK-3, and closely approaches the best performance of the metal organic framework MOF-177. The CO2 adsorption capacities of the adsorbents were found to be closely correlated with the BET surface areas of the materials tested.  相似文献   

4.
Nitrogen-containing carbons have been prepared from polyaniline by carbonization and activation. Lithium storage performances of the carbons have been studied by galvanostatic charge/discharge. The carbon without activation shows a first discharge capacity of 729 mAh g− 1, after activation, the capacity improved. The first discharge capacity of the carbon prepared by H3PO4 activation is 1083 mAh g− 1, and that of the carbon prepared by KOH activation is as high as 2201 mAh g− 1, whose reversible capacity is 1027 mAh g− 1. To the carbon prepared by KOH activation, the first coulombic efficiency is just 47%, however, from the second cycle, the coulombic efficiency goes up rapidly to above 90%, the reversible capacity is still as high as 747 mAh g− 1 after 20 cycles. It may be a promising candidate as an anode material for lithium secondary batteries.  相似文献   

5.
In this study, rapeseed oil cake as a precursor was used to prepare activated carbons by chemical activation with sodium carbonate (Na2CO3) at 600 and 800 °C. The activated carbon with the highest surface area of 850 m2 g?1 was produced at 800 °C. The prepared activated carbons were mainly microporous. The activated carbon having the highest surface area was used as an adsorbent for the removal of lead (II) and nickel (II) ions from aqueous solutions. The effects of pH, contact time, and initial ion concentration on the adsorption capacity of the activated carbon were investigated. The kinetic data of adsorption process were studied using pseudo-first-order, pseudo-second-order kinetic models and intraparticle diffusion model. The experimental data were well adapted to the pseudo-second-order model for both tested ions. The adsorption data for both ions were well correlated with Langmuir isotherm. The maximum monolayer adsorption capacities of the activated carbon for the removal of lead (II) and nickel (II) ions were determined as 129.87 and 133.33 mg g?1, respectively.  相似文献   

6.
In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO2 flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m2 g−1). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H2O2 to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes.  相似文献   

7.
A series of activated carbon adsorbents with super-high specific surface areas (SHAC) (SBET ≥ 2500 m2 g−1) was prepared and used to adsorb storage hydrogen. The results indicated that the structure of activated carbon adsorbents and hydrogen storage capacity are affected by preparation conditions. The influence of preparation conditions on hydrogen storage capacity can be attributed to changes in the structure of the prepared activated carbon adsorbents. The prepared adsorbents had high hydrogen storage capacity, reaching 5.65 wt % and 4.98 wt % when the adsorption temperatures were 0 °C and 25 °C, respectively, and the pressure was 9.0 MPa.  相似文献   

8.
The goal of the study was to produce a low-cost activated carbon from agricultural residues via single stage carbon dioxide (CO2) activation and to investigate its applicability in capturing CO2 flue gas. The performance of the activated carbon was characterized in terms of the chemical composition, surface morphology as well as textural characteristics. The adsorption capacity was investigated at three temperatures of 25, 50 and 100 °C for different types of adsorbate, such as purified carbon dioxide and binary mixture of carbon dioxide and nitrogen. The purified CO2 adsorption study showed that the greatest adsorption capacity of the optimized activated carbon of 1.79 mmol g?1 was obtained at the lowest operating temperature. In addition, the adsorption study proved that the adsorption capacity for binary mixtures was lower due to the reduction in partial pressure. The experimental values of the purified CO2 adsorption were modelled by the Lagergren pseudo-first-order model, pseudo-second-order model, and intra-particle diffusion model. Based on the analysis, it inferred that the adsorption of CO2 followed the pseudo-second-order model with regression coefficient value higher than 0.995. In addition, the adsorption study was governed by both film diffusion and intra-particle diffusion. The activation energy that was lesser than 25 kJ mol?1 implied that physical adsorption (physisorption) occurred.  相似文献   

9.
Porous carbon was prepared from deoiled asphalt by conventional NaOH activation process and by the combination of nano-sized MgO template method and NaOH activation process. The electrochemical properties used as supercapacitors electrode material were evaluated in 7 M KOH aqueous solution. Porous carbon sample obtained by NaOH activation possessed more micropores and higher specific surface area, resulting in a higher specific capacitance of 235 F g− 1 at low charge-discharge current of 50 mA g− 1. For the combination method, the resultant carbons possessed higher capacitance and good capacitance maintaining at high current, with a capacitance of nearly twice as that of the former at current density of 10 A g− 1, due to their abundant mesopores.  相似文献   

10.
Birnessite-type MnO2/activated carbon nanocomposites have been synthesized by directly reducing KMnO4 with activated carbon in an aqueous solution. It is found that the morphologies of MnO2 grown on activated carbon can be tailored by varying the reaction ratio of activated carbon and KMnO4. An asymmetric supercapacitor with high energy density was fabricated by using MnO2/activated carbon (MnO2/AC) nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na2SO4 aqueous electrolyte. The asymmetric supercapacitor can be cycled reversibly in the cell voltage of 0–2 V, and delivers a specific capacitance of 50.6 F g−1 and a maximum energy density of 28.1 Wh kg−1 (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of MnO2/AC symmetric supercapacitor (9.7 Wh kg−1).  相似文献   

11.
Carbon fiber (CF) composites of organometallic intercalated polyaniline (Pani) and polypyrrole (Ppy) doped with polystyrene sulfonate (PSS) were electrochemically synthesized and tested as electrodes for lithium-ion batteries. From the results obtained by cyclic voltammetry, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy, it was concluded that the incorporation of copper(II) ions in the polymeric composite was successfully attained by adsorption of Cu2+ ions and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) monomers on the carbon microfibers. The experimental electrochemical impedance response of the obtained Pani(DMcT–Cu ion)/CF composite was simulated by adequate equivalent electrical circuits. After 20 charge/discharge cycles, the experimental discharge specific capacity of the Pani(DMcT–Cu ion)/CF composite was 118 mA h g−1 (100% coulombic efficiency) using a 1 mol L−1 LiClO4 solution in propylene carbonate, and 110 mA h g−1 when a polymeric electrolyte was used. In the charge/discharge tests of the Ppy-PSS/Pani/CF composite as anode, a high discharge specific capacity of 225 mA h g−1 was obtained after 20 cycles. The resulting Ppy-PSS/Pani/CF/polymeric electrolyte/Pani(DMcT–Cu ion)/CF battery presented a specific capacity of 62 mA h g−1 and could be charged up to 2.0 V, yielding an energy density 425 W h g−1, with a coulombic efficiency of about 98%.  相似文献   

12.
Direct air capture (DAC) of CO2 has emerged as the most promising “negative carbon emission” technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g−1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2, indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.  相似文献   

13.
Supercapacitive swing adsorption (SSA) with garlic roots-derived activated carbon achieves a record adsorption capacity of 312 mmol kg−1 at a low energy consumption of 72 kJ mol−1 and high mass loadings (>30 mg cm−2) at 1.0 V for 85%N2/15%CO2 mixtures. The activated carbons are inexpensively prepared in a one-step process using potassium carbonate, and air as activators. The adsorption capacity further increases with increasing voltage. At a voltage of 1.4 V, a sorption capacity of 524 mmol kg−1 at an energy consumption of 130 kJ mol−1 can be achieved. The volumetric sorption capacity is also enhanced and reaches values of 85.7 mol m−3 at 1.0 V, and 126 mol m−3 at 1.4 V. Cycle stability for at least 130 h is demonstrated.  相似文献   

14.

The effect of thermal pretreatment on the porous structure and adsorption properties of asphalt-based carbons activated with potassium hydroxide was investigated by FTIR, Raman spectroscopy, TEM, N2 and CO2 adsorption. Two series of the activated carbons were prepared by a one-stage method using KOH as the activating agent and a two-stage method including pretreatment of asphalt at 450 °C. A cross-effect of the KOH/asphalt ratio and pretreatment conditions on the characteristics of the porous structure of the activated carbons was revealed. The pretreatment of asphalt before activation is demonstrated to be a necessary stage for the effective control of the carbon porous structure by variation the KOH/asphalt ratio from 2 to 4. The porous carbon derived from petroleum asphalt exhibited the high CO2 adsorption capacity of 3.8 mmol/g at 25 °C and 1 atm and good selectivity for CO2 over N2, indicating possible applications in CO2 capture technology.

Graphical abstract
  相似文献   

15.
We report a surfactant-free chemical solution route for synthesizing one-dimensional porous SnO2 helical nanotubes templated by helical carbon nanotubes and two-dimensional SnO2 sheets templated by graphite sheets. Transmission electron microscopy, X-ray diffraction, cyclic voltammetry, and galvanostatic discharge–charge analysis are used to characterize the SnO2 samples. The unique nanostructure and morphology make them promising anode materials for lithium-ion batteries. Both the SnO2 with the tubular structure and the sheet structure shows small initial irreversible capacity loss of 3.2% and 2.2%, respectively. The SnO2 helical nanotubes show a specific discharge capacity of above 800 mAh g−1 after 10 charge and discharge cycles, exceeding the theoretical capacity of 781 mAh g−1 for SnO2. The nanotubes remain a specific discharge capacity of 439 mAh g−1 after 30 cycles, which is better than that of SnO2 sheets (323 mAh g−1).  相似文献   

16.
We report in-situ synthesis and direct deposition of Fe2O3 nanoparticles (NPs) on the ionic liquid (IL)-functionalized carbon nanotubes (fCNT). As shown in transmission electron microscope (TEM) and scanning TEM (STEM) images, Fe2O3 NPs with the diameter of 3–5 nm are randomly distributed on the sidewall of fCNT, revealing the nanocrystalline structure. The chemical identity and interaction of the fCNT/Fe2O3 composite are investigated by FT-IR, Raman and XPS analyses. In particular, the fCNT/Fe2O3 composite is solution-processable in a form of binder free and self-standing film. Such a free-standing electrode film based on the fCNT/Fe2O3 composite achieve the discharge capacity of 413 mAh g−1 which is much greater than 34 mAh g−1 of the CNT and 191 mAh g−1 of the fCNT due to the redox reaction of Fe2O3 NPs. Moreover, the fCNT/Fe2O3 composite show the coulombic efficiency of 98% and the capacity fading from 272 mAh g−1 to 182 mAh g−1 after 50 cycles of charge/discharge.  相似文献   

17.
Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g?1, the carbon without activation shows a first discharge capacity of 515 mAh g?1. After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl2 and KOH activation was 1010 and 2085 mAh g?1, respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g?1 after 20 cycles, which was much better than that activated by ZnCl2. These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.  相似文献   

18.
Electric double layer capacitors (EDLCs) based on activated carbon electrodes and poly (vinyl alcohol)–lithium perchlorate (PVA–LiClO4)-nanosized titania (TiO2) doped polymer electrolyte have been fabricated. Incorporation of TiO2 into PVA–LiClO4 system increases the ionic conductivity. The highest ionic conductivity of 1.3 × 10−4 S cm−1 is achieved at ambient temperature upon inclusion of 8 wt.% of TiO2. Differential scanning calorimetry (DSC) analyses reveal that addition of TiO2 into polymer system increases the flexibility of polymer chain and favors the ion migration. Scanning electron microscopy (SEM) analyses display the surface morphology of the nanocomposite polymer electrolytes. The electrochemical stability window of composite polymer electrolyte is in the range of −2.3 V to 2.3 V as shown in cyclic voltammetry (CV) studies. The performance of EDLC is evaluated by electrochemical impedance spectroscopy (EIS), CV and galvanostatic charge–discharge technique. CV test discloses a nearly rectangular shape, which signifies the capacitive behavior of an ELDC. The EDLC containing composite polymer electrolyte gives higher specific capacitance value of 12.5 F g−1 compared to non-composite polymer electrolyte with capacitance value of 3.0 F g−1 in charge–discharge technique. The obtained specific capacitance of EDLC is in good agreement with each method used in this present work. Inclusion of filler into the polymer electrolyte enhances the electrochemical stability of EDLC.  相似文献   

19.
MgO nano/microparticles with multiple morphologies and porous structures have been fabricated via the surfactant (poly(N-vinyl-2-pyrrolidone, poly(ethylene glycol) (PEG), cetyltrimethylammonium bromide, oleylamine or triblock copolymer P123 or F127) assisted solvo- or hydrothermal route in a dodecylamine or oleic acid solvent. The as-fabricated MgO samples were characterized by means of numerous techniques. It is shown that the obtained MgO samples were single-phase and of cubic in crystal structure; the particle morphology and pore architecture mainly depended upon the surfactant, solvent, and solvo- or hydrothermal temperature adopted. The solvothermal process resulted in polycrystalline MgO, whereas the hydrothermal one gave rise to single-crystalline MgO. Surface areas (8–169 m2 g−1) of the MgO samples derived solvothermally were lower than those (181–204 m2 g−1) of the MgO counterparts derived hydrothermally, with the mesoporous MgO generated after the PEG-assisted hydrothermal treatment at 240 °C for 72 h possessing the highest surface area. CO2 adsorption capacities of the MgO samples were in good agreement with their surface areas, and the mesoporous MgO derived hydrothermally with PEG at 240 °C for 72 h exhibited the largest CO2 uptake (368 μmol g−1) below 350 °C. We believe that such a high low-temperature adsorption capacity renders the mesoporous magnesia material useful in the utilization of acidic gas adsorption.  相似文献   

20.
Hard carbon is generally accepted as the choice of anode material for sodium-ion batteries. However, integrating high capacity, high initial Coulombic efficiency (ICE), and good durability in hard carbon materials remains challenging. Herein, N-doped hard carbon microspheres (NHCMs) with abundant Na+ adsorption sites and tunable interlayer distance are constructed based on the amine–aldehyde condensation reaction using m-phenylenediamine and formaldehyde as the precursors. The optimized NHCM-1400 with a considerable N content (4.64%) demonstrates a high ICE (87%), high reversible capacity with ideal durability (399 mAh g−1 at 30 mA g−1 and 98.5% retention over 120 cycles), and decent rate capability (297 mAh g−1 at 2000 mA g−1). In situ characterizations elucidate the adsorption–intercalation-filling sodium storage mechanism of NHCMs. Theoretical calculation reveals that the N-doping decreases the Na+ adsorption energy on hard carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号