首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MnO2/graphene composite was synthesized by a facile and effective polymer-assisted chemical reduction method. The nanosized MnO2 particles were homogeneously distributed on graphene nanosheets, which have been confirmed by scanning electron microscopy and transmission electron microscopy analysis. The capacitive properties of the MnO2/graphene composite have been investigated by cyclic voltammetry(CV). MnO2/graphene composite exhibited a high specific capacitance of 324 F g−1 in 1 M Na2SO4 electrolyte. In addition, the MnO2/graphene composite electrode shows excellent long-term cycle stability (only 3.2% decrease of the specific capacitance is observed after 1,000 CV cycles).  相似文献   

2.
The Graphene nanosheets/SnO2 composites were synthesized using stannous chloride to restore the semi-reduction graphene oxide (SRGO) under a simple hydrothermal reduction procedure. First graphene oxide was pre-reduced by glucose for a certain time to get SRGO, which keeps the good water-solubility of graphite oxide (GO) and has a good conductivity like graphene nanosheets. The higher electrostatic attraction between SRGO and Sn2+ makes SnO2 nanoparticles tightly anchor on the graphene sheets in the hydrothermal reduction process. The formation mechanism of the composite was investigated by SEM, TEM, XRD, AFM and Raman. Moreover, the electrochemical behaviors of the Graphene nanosheets/SnO2 nanocomposites were studied by cyclic voltammogram, electrical impedance spectroscopy (EIS) and chronopotentiometry. Results showed that the Graphene nanosheets/SnO2 composites have excellent supercapacitor performances: the specific capacitance reached 368 F g−1 at a current density of 5 mA cm−2, and the energy density was much improved to 184 Wh kg−1 with a power density of 16 kW kg−1, and capacity retention was more than 95% after cycling 500 cycles with a constant current density of 50 mA cm−2. The experimental results and the thorough analysis described in this work not only provide a potential electrode material for supercapacitors but also give us a new way to solve the reunification of the graphene sheets.  相似文献   

3.
A microwave-assisted emulsion process has been developed to synthesize birnessite-type MnO2 one-dimensional (1D) nanostructures. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM images confirmed that the particles were composed of nanowires and nanobelts. As a consequence of the small size, such MnO2 nanostructures exhibit a high specific capacitance of 277 F g−1 at the current density of 0.2 mA cm−2. Furthermore, the simple synthetic approach may provide a convenient route for the preparation of birnessite-type MnO2 nanowires and other 1D nanostructured materials on a large scale.  相似文献   

4.
Mesoporous hybrid network of reduced graphene oxide (rG‐O) and layered MnO2 nanosheets could act as an efficient immobilization matrix for improving the electrochemical activity of layered double hydroxide (LDH). The control of MnO2/rG‐O ratio is crucial in optimizing the porous structure and electrical conductivity of the resulting hybrid structure. The immobilization of Co‐Al‐LDH on hybrid MnO2/rG‐O network is more effective in enhancing its electrode activity compared with that of on pure rG‐O network. The Co‐Al‐LDH?rG‐O?MnO2 nanohybrid deliveres a greater specific capacitance than does MnO2‐free Co‐Al‐LDH?rG‐O nanohybrid. The beneficial effect of MnO2 incorporation on the electrode performance of nanohybrid is more prominent for higher current density and faster scan rate, underscoring the significant enhancement of the electron transport of Co‐Al‐LDH?rG‐O. This is supported by electrochemical impedance spectroscopy. The present study clearly demonstrates the usefulness of the porously assembled hybrid network of graphene and metal oxide nanosheets as an effective platform for exploring efficient LDH‐based functional materials.  相似文献   

5.
In the present study, we synthesize nanoneedle structures of MnO2/graphene nanocomposites (N-RGO/MnO2) and birnessite-type MnO2/graphene nanocomposites (B-RGO/MnO2). The morphologies and microstructures of as-prepared composites are characterized by X-ray diffractometry, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Our characterizations indicate that nanoneedle structures of MnO2 and birnessite-type MnO2 are successfully formed on graphene surfaces. Capacitive properties of the N-RGO/MnO2 and B-RGO/MnO2 electrodes are measured using cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1 M Na2SO4 aqueous solution as the electrolyte. The N-RGO/MnO2 electrode displays a specific capacitance as high as 327.5 F g?1 at 10 mV s?1, which is higher than that of a B-RGO/MnO2 electrode (248.5 F g?1). It is believed that the nanoneedle structure of MnO2 shows excellent electrochemical properties than birnessite-type MnO2 for the electrode materials for supercapacitors.  相似文献   

6.
In this article, three-dimensional (3D) heterostructured of MnO2/graphene/carbon nanotube (CNT) composites were synthesized by electrochemical deposition (ELD)-electrophoretic deposition (EPD) and subsequently chemical vapour deposition (CVD) methods. MnO2/graphene/CNT composites were directly used as binder-free electrodes to investigate the electrochemical performance. To design a novel electrode material with high specific area and excellent electrochemical property, the Ni foam was chosen as the substrate, which could provide a 3D skeleton extremely enhancing the specific surface area and limiting the huge volume change of the active materials. The experimental results indicated that the specific capacitance of MnO2/graphene/CNT composite was up to 377.1 F g?1 at the scan speed of 200 mV s?1 with a measured energy density of 75.4 Wh kg?1. The 3D hybrid structures also exhibited superior long cycling life with close to 90% specific capacitance retained after 500 cycles.  相似文献   

7.
A homogeneous composite of MnO2/multi-wall carbon nanotubes (MnO2/MWCNTs) was rapidly and efficiently synthesized by a redox reaction of MnO4 and Mn2+ on the MWCNTs under ultrasonic irradiation. The structure and morphology of the obtained MnO2 and MnO2/MWCNTs composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Electrochemical investigation indicated that the maximum specific capacitance of the MnO2/MWCNTs composite, measured by galvanostatic charge-discharge test, was 315 F g− 1, compared to the pristine MnO2 (192 F g− 1) and MWCNTs electrode (25 F g− 1), showing the synergistic effect of MWCNTs and MnO2. The homogeneous hybrid nanostructure and the good conductivity of MWCNTs were considered to be responsible for its preferable electrochemical performances.  相似文献   

8.
Three-dimensional nanostructured polyaniline (PANI) and manganese oxide (MnO x ) composite porous microspheres were prepared by oxidizing aniline with KMnO4 under interfacial chemical synthesis with 4-amino-thiophenol (4-ATP) as the structure-directing agent on the Au substrate. Surface morphology and chemical composition of PANI/MnO x microsphere were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermo gravimetric-differential thermal analysis, and Fourier transform infrared spectrum. The result displayed that concentration of KMnO4 played a key role in forming the 3D nanostructured porous microspheres. To obtain the regular shapes and uniform sizes of the porous microspheres, the optimal concentration of oxidant was 0.15 mol L−1. The electrochemistry performances of PANI/MnO x microsphere were determined by cyclic voltammograms, electrochemical impedance spectroscopy, and galvanostatic charge–discharge. The specific capacitance of the 3D nanostructured PANI–MnO x porous microspheres exhibited a maximum value of 828 F g−1 at current density of 2 mA cm−2 over a potential range of 0.0–0.9 V versus SCE. It has improved 365 and 88 % comparing with that of PANI (178 F g−1) and MnO x (440 F g−1) obtained at the similar condition. The charge–discharge tests showed the PANI/MnO x microsphere possessed a good cycling stability. It maintained about 84.2 % of the initial capacitance after 1000 cycles at a current density of 2.0 mA cm−2.  相似文献   

9.
A novel P25/Black phosphorus/Graphene hybrid has been successfully prepared by loading two components [P25 and Black phosphorus (BP)] on graphene nanosheets via a simple one-step hydrothermal method. The P25/BP/Graphene hybrids are characterized by scanning electron microscopy (SEM),Raman spectra and X-ray diffraction patterns, which confirm a good crystallized P25 and BP hybridization with graphene. Photoelectrochemical tests verify that the photocurrent density of as-prepared P25/BP/Graphene ternary hybrid (9.32 μA/cm2) is greatly improved at 1 V, which is nearly 34 times higher than that of sole P25 and 4.8 times as much as that of P25/Graphene. The improved photocatalytic activity is proposed to be benefited from the higher carrier mobility and additional accessible sites derive from the special configurations of ternary hybrid, as well as the introduction of the visible and near-infrared-activated BP photocatalyst. More importantly, this work demonstrates that the as-prepared P25/BP/Graphene hybrid would be an attractive candidate as high-performance photocatalyst, and provide positive proof of concept for developing the practical applications of graphene and black phosphorus based composites.  相似文献   

10.
Nanostructured manganese dioxide, MnO2, was synthesized by a sonochemical method. Nanostructured MnO2 had the shapes of flower-like and nanowires by changing the pH in the aqueous solution, as observed via scanning electron microscopy and transmission electron microscopy. The electrochemical capacitance was studied by cyclic voltammetry. A maximum specific capacitance of 300 Fg−1 was obtained for the nanowires in a potential range from 0.1 to 0.9 V vs. SCE in 1 M sodium sulfate solution at a scan rate of 5 mV s−1. These materials can be useful to increase the specific capacitance by wetting behavior of electrolytes from their structural properties.  相似文献   

11.
Multi-walled carbon nanotubes (MWNTs) were selectively etched in molten nitrate to produce short MWNTs (s-MWNTs). MnO2/s-MWNT nanocomposite was synthesized by a reduction of potassium permanganate under microwave irradiation. For comparative purpose, MnO2/MWNT nanocomposite was also synthesized and investigated for its physical and electrochemical performance. Uniform and conformal MnO2 coatings were more easily formed on the surfaces of individual s-MWNTs. MnO2/s-MWNT nanocomposite estimated by cyclic voltammetry (CV) in 0.5 M Na2SO4 aqueous solution had the specific capacitance as high as 392.1 F g−1 at 2 mV s−1. This value was more than 48.9% larger than MnO2/s-MWNT nanocomposite. In addition, MnO2/s-MWNT nanocomposite was also examined by repeating the CV test at a scan rate of 50 mV s−1, exhibiting an excellent cycling stability along with 99.2% specific capacitance retained after 1000 cycles. Therefore, MnO2/s-MWNT nanocomposite is a promising electrode material in the supercapacitors.  相似文献   

12.
Ni2+-Fe3+ layered double hydroxides (LDHs)/MnO2 layered nanocomposite has been fabricated by using both layer-by-layer self-assembly method and flocculated technology, based on electrostatic interaction of positively charged Ni2+-Fe3+ LDHs nanosheets and negatively charged MnO2 nanosheets. Ultraviolet-visible spectroscopy is used to probe the dynamic growth of the multilayer film, exhibiting progressive enhancement of optical absorption due to the assembly of Ni2+-Fe3+ LDHs nanosheets and MnO2 nanosheets. The assembled Ni2+-Fe3+ LDHs/MnO2 nanocomposite has been characterized by XRD, SEM and TEM. The electrochemical property of the synthesized Ni2+-Fe3+ LDHs/MnO2 layered nanocomposite has been studied using cyclic voltammetry in a mild aqueous electrolyte. The Ni2+-Fe3+ LDHs/MnO2 nanocomposite exhibits a relative good capacitive behavior in a neutral electrolyte system, and its initial capacitance value is 104 F g−1.  相似文献   

13.
Birnessite-type MnO2/activated carbon nanocomposites have been synthesized by directly reducing KMnO4 with activated carbon in an aqueous solution. It is found that the morphologies of MnO2 grown on activated carbon can be tailored by varying the reaction ratio of activated carbon and KMnO4. An asymmetric supercapacitor with high energy density was fabricated by using MnO2/activated carbon (MnO2/AC) nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na2SO4 aqueous electrolyte. The asymmetric supercapacitor can be cycled reversibly in the cell voltage of 0–2 V, and delivers a specific capacitance of 50.6 F g−1 and a maximum energy density of 28.1 Wh kg−1 (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of MnO2/AC symmetric supercapacitor (9.7 Wh kg−1).  相似文献   

14.
Graphene fiber based micro‐supercapacitors (GF micro‐SCs) have attracted great attention for their potential applications in portable and wearable electronics. However, due to strong π–π stacking of nanosheets for graphene fibers, the limited ion accessible surface area and slow ion diffusion rate leads to low specific capacitance and poor rate performance. Here, the authors report a strategy for the synthesis of a vertically oriented graphene nanoribbon fiber with highly exposed surface area through confined‐hydrothermal treatment of interconnected graphene oxide nanoribbons and consequent laser irradiation process. As a result, the as‐obtained fiber shows high length specific capacitance of 3.2 mF cm?1 and volumetric capacitance of 234.8 F cm?3 at 2 mV s?1, as well as excellent rate capability and outstanding cycling performance (96% capacitance retention after 10 000 cycles). Moreover, an all‐solid‐state asymmetric supercapacitor based on graphene nanoribbon fiber as negative electrode and MnO2 coated graphene ribbon fiber as positive electrode, shows high volumetric capacitance and energy density of 12.8 F cm?3 and 5.7 mWh cm?3 (normalized to the device volume), respectively, much higher than those of previously reported GF micro‐SCs, as well as a long cycle life with 88% of capacitance retention after 10 000 cycles.  相似文献   

15.
A nanocomposite of manganese dioxide coated on the carbon nanotubes (MnO2/CNTs) was synthesized by a facile direct redox reaction between potassium permanganate and carbon nanotubes without any other oxidant or reductant addition. The morphology, microstructure and crystalline form of this MnO2/CNT nanocomposite were characterized by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical properties are characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD). The results show that the facile prepared MnO2/CNTs nanocomposite shows specific capacitance of 162.2 F g−1 at the current density of 0.2 A g−1 and excellent charge/discharge property with 90% of its specific capacitance kept after 2000 cycles at the current density of 5 A g−1.  相似文献   

16.
Graphene/zinc bismuthate nanorods composites have been prepared using graphene and zinc bismuthate nanorods as the raw materials. The composites are composed of graphene nanosheets with folds and wrinkles and zinc bismuthate nanorods which possesses cubic ZnBi38O58 and hexagonal graphite phases. The zinc bismuthate nanorods are dispersed on the graphene nanosheets. A pair of quasi-reversible redox cyclic voltammogram (CV) peaks exist at the graphene/zinc bismuthate nanorods composites modified glassy carbon electrode. The CV peak current linearly increases with the scan rate from 25?mV?s?1 to 200?mV?s?1. The electrochemical response is linear in the ascorbic acid concentration range of 0.0001-2?mM and the detection limit is 0.07?μM. The graphene/zinc bismuthate nanorods composites can be considered as a promising electrode materials to be utilized as the electrochemical sensor.  相似文献   

17.
Composites of integrated 1-D MnO2 nanowires and 2-D graphene sheets at nanoscale are successfully prepared under the mild condition of 100 °C. The fabricated materials are extensively characterized by electron microscopy and X-ray diffraction, and the formation mechanism is investigated. It is of particular note that the graphene sheets in this case play dual roles, both as active reagent to reduce MnO4? to form 1-D MnO2 nanowires and as active component of the composites integrated into the 3-D structure. The proof-of-concept demonstration shows that the 3-D composites can be used as active materials for supercapacitors, where the high-surface area 2-D graphene sheets serve as both high-surface area active materials and conductive supports for high-capacity 1-D MnO2 nanowires.  相似文献   

18.
Graphene nanosheets (GS) had been solvothermally synthesized through reducing hexachloro-1,3-butadiene (C4Cl6) by metallic sodium (Na) in polyethylene glycol-600 (PEG-600) at 300 °C. Atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) investigations indicated that 1–3 graphite layers could be observed. The Raman spectrum showed that the peak of 2D band at 2693 cm? 1 of GS had a smaller wave number and stronger intensity compared to the 2717 cm? 1 of commercial graphitic flakes. Meanwhile, the ID/IG value of GS was 0.40 indicating a lower density of defects of GS. The possible reaction process was that C4Cl6 was dechlorinated by Na in the presence of PEG-600 to produce carbon framework, then these newly produced carbon framework would connect to each other to form the hexagonal network of graphene.  相似文献   

19.
Si/Graphene nanoparticles represent attractive alternative anode materials for Lithium-ion batteries. Graphene nanosheets with different properties, including surface area, defect distance, and charge-transfer resistance, were fabricated and characterised in Si/Graphene nanocomposites formed by static-electric self-assembly then by an in-situ reduction process. Graphene nanosheets that exhibited the highest surface area, the shortest defect distance, and the lowest charge-transfer resistance demonstrated the best overall electrochemical performance, with a high initial discharge capacity of 2692?mAh?g?1, good cycling performance of 1135?mAh?g?1, at the 200th cycle at the current rate of 0.5?C. This work shows the preferable graphene quality for Si/Graphene nanocomposite anode and provides insights into the design of graphene nanocomposite electrodes, regardless of the graphene synthesis method.  相似文献   

20.
We report a one-step fabrication of α-iron oxyhydroxide/reduced graphene oxide (α-FeOOH/rGO) composites, in which the ferrous sulfate (FeSO4·7H2O) are used as the iron raw and reducing agent to grow goethite (α-FeOOH) and reduce graphite oxide (GO) to rGO in the same time. The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and FT-IR. Moreover, their electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The specific capacitance of 452 F g−1 is obtained at a specific current of 1 A g−1 when the mass ratio of α-FeOOH to rGO is up to 80.3:19.7. In addition, the α-FeOOH/rGO composite electrodes exhibit the excellent rate capability (more than 79% retention at 10 A g−1 relative to 1 A g−1) and well cycling stability (13% capacitance decay after 1000 cycles). These results suggest the importance and great potential of α-FeOOH/rGO composites in the applications of high-performance energy-storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号