首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

2.
We study the unextendible maximally entangled bases (UMEB) in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\) and connect the problem to the partial Hadamard matrices. We show that for a given special UMEB in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\), there is a partial Hadamard matrix which cannot be extended to a Hadamard matrix in \(\mathbb {C}^{d}\). As a corollary, any \((d-1)\times d\) partial Hadamard matrix can be extended to a Hadamard matrix, which answers a conjecture about \(d=5\). We obtain that for any d there is a UMEB except for \(d=p\ \text {or}\ 2p\), where \(p\equiv 3\mod 4\) and p is a prime. The existence of different kinds of constructions of UMEBs in \(\mathbb {C}^{nd}\bigotimes \mathbb {C}^{nd}\) for any \(n\in \mathbb {N}\) and \(d=3\times 5 \times 7\) is also discussed.  相似文献   

3.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

4.
The calculus T? is a successor-free version of Gödel’s T. It is well known that a number of important complexity classes, like e.g. the classes logspace, \(\textsc{p}\), \(\textsc{linspace}\), \(\textsc{etime}\) and \(\textsc{pspace}\), are captured by natural fragments of T? and related calculi. We introduce the calculus T, which is a non-deterministic variant of T?, and compare the computational power of T and T?. First, we provide a denotational semantics for T and prove this semantics to be adequate. Furthermore, we prove that \(\textsc{linspace}\subseteq \mathcal {G}^{\backsim }_{0} \subseteq \textsc{linspace}\) and \(\textsc{etime}\subseteq \mathcal {G}^{\backsim }_{1} \subseteq \textsc{pspace}\) where \(\mathcal {G}^{\backsim }_{0}\) and \(\mathcal {G}^{\backsim }_{1}\) are classes of problems decidable by certain fragments of T. (It is proved elsewhere that the corresponding fragments of T? equal respectively \(\textsc{linspace}\) and \(\textsc{etime}\).) Finally, we show a way to interpret T in T?.  相似文献   

5.
Consider a set of labels L and a set of unordered trees \(\mathcal{T}=\{\mathcal{T}^{(1)},\mathcal{T}^{(2)},\ldots ,\allowbreak \mathcal{T}^{(k)}\}\) where each tree \(\mathcal{T}^{(i)}\) is distinctly leaf-labeled by some subset of L. One fundamental problem is to find the biggest tree (denoted as supertree) to represent \(\mathcal{T}\) which minimizes the disagreements with the trees in \(\mathcal{T}\) under certain criteria. In this paper, we focus on two particular supertree problems, namely, the maximum agreement supertree problem (MASP) and the maximum compatible supertree problem (MCSP). These two problems are known to be NP-hard for k≥3. This paper gives improved algorithms for both MASP and MCSP. In particular, our results imply the first polynomial time algorithms for both MASP and MCSP when both k and the maximum degree D of the input trees are constant.  相似文献   

6.
A novel ν-twin support vector machine with Universum data (\(\mathfrak {U}_{\nu }\)-TSVM) is proposed in this paper. \(\mathfrak {U}_{\nu }\)-TSVM allows to incorporate the prior knowledge embedded in the unlabeled samples into the supervised learning. It aims to utilize these prior knowledge to improve the generalization performance. Different from the conventional \(\mathfrak {U}\)-SVM, \(\mathfrak {U}_{\nu }\)-TSVM employs two Hinge loss functions to make the Universum data lie in a nonparallel insensitive loss tube, which makes it exploit these prior knowledge more flexibly. In addition, the newly introduced parameters ν1, ν2 in the \(\mathfrak {U}_{\nu }\)-TSVM have better theoretical interpretation than the penalty factor c in the \(\mathfrak {U}\)-TSVM. Numerical experiments on seventeen benchmark datasets, handwritten digit recognition, and gender classification indicate that the Universum indeed contributes to improving the prediction accuracy. Moreover, our \(\mathfrak {U}_{\nu }\)-TSVM is far superior to the other three algorithms (\(\mathfrak {U}\)-SVM, ν-TSVM and \(\mathfrak {U}\)-TSVM) from the prediction accuracy.  相似文献   

7.
We study mutually unbiased maximally entangled bases (MUMEB’s) in bipartite system \(\mathbb {C}^d\otimes \mathbb {C}^d (d \ge 3)\). We generalize the method to construct MUMEB’s given in Tao et al. (Quantum Inf Process 14:2291–2300, 2015), by using any commutative ring R with d elements and generic character of \((R,+)\) instead of \(\mathbb {Z}_d=\mathbb {Z}/d\mathbb {Z}\). Particularly, if \(d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}\) where \(p_1, \ldots , p_s\) are distinct primes and \(3\le p_1^{a_1}\le \cdots \le p_s^{a_s}\), we present \(p_1^{a_1}-1\) MUMEB’s in \(\mathbb {C}^d\otimes \mathbb {C}^d\) by taking \(R=\mathbb {F}_{p_1^{a_1}}\oplus \cdots \oplus \mathbb {F}_{p_s^{a_s}}\), direct sum of finite fields (Theorem 3.3).  相似文献   

8.
We consider optimization problems of the form (S, cost), where S is a clause set over Boolean variables x 1?...?x n , with an arbitrary cost function \(\mathit{cost}\colon \mathbb{B}^n \rightarrow \mathbb{R}\), and the aim is to find a model A of S such that cost(A) is minimized. Here we study the generation of proofs of optimality in the context of branch-and-bound procedures for such problems. For this purpose we introduce \(\mathtt{DPLL_{BB}}\), an abstract DPLL-based branch-and-bound algorithm that can model optimization concepts such as cost-based propagation and cost-based backjumping. Most, if not all, SAT-related optimization problems are in the scope of \(\mathtt{DPLL_{BB}}\). Since many of the existing approaches for solving these problems can be seen as instances, \(\mathtt{DPLL_{BB}}\) allows one to formally reason about them in a simple way and exploit the enhancements of \(\mathtt{DPLL_{BB}}\) given here, in particular its uniform method for generating independently verifiable optimality proofs.  相似文献   

9.
10.
Let \(R=\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}+\cdots +u^{k}\mathbb {F}_{2^{m}}\), where \(\mathbb {F}_{2^{m}}\) is the finite field with \(2^{m}\) elements, m is a positive integer, and u is an indeterminate with \(u^{k+1}=0.\) In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of \(2^{m}\)-ary quantum codes is obtained via the Gray map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R.  相似文献   

11.
We introduce two scheduling problems, the flexible bandwidth allocation problem (\(\textsc {FBAP}\)) and the flexible storage allocation problem (\(\textsc {FSAP}\)). In both problems, we have an available resource, and a set of requests, each consists of a minimum and a maximum resource requirement, for the duration of its execution, as well as a profit accrued per allocated unit of the resource. In \(\textsc {FBAP}\), the goal is to assign the available resource to a feasible subset of requests, such that the total profit is maximized, while in \(\textsc {FSAP}\) we also require that each satisfied request is given a contiguous portion of the resource. Our problems generalize the classic bandwidth allocation problem (BAP) and storage allocation problem (SAP) and are therefore \(\text {NP-hard}\). Our main results are a 3-approximation algorithm for \(\textsc {FBAP}\) and a \((3+\epsilon )\)-approximation algorithm for \(\textsc {FSAP}\), for any fixed \(\epsilon >0 \). These algorithms make nonstandard use of the local ratio technique. Furthermore, we present a \((2+\epsilon )\)-approximation algorithm for \(\textsc {SAP}\), for any fixed \(\epsilon >0 \), thus improving the best known ratio of \(\frac{2e-1}{e-1} + \epsilon \). Our study is motivated also by critical resource allocation problems arising in all-optical networks.  相似文献   

12.
Users of location-based services are highly vulnerable to privacy risks since they need to disclose, at least partially, their locations to benefit from these services. One possibility to limit these risks is to obfuscate the location of a user by adding random noise drawn from a noise function. In this paper, we require the noise functions to satisfy a generic location privacy notion called \(\ell \)-privacy, which makes the position of the user in a given region \(\mathcal {X}\) relatively indistinguishable from other points in \(\mathcal {X}\). We also aim at minimizing the loss in the service utility due to such obfuscation. While existing optimization frameworks regard the region \(\mathcal {X}\) restrictively as a finite set of points, we consider the more realistic case in which the region is rather continuous with a nonzero area. In this situation, we demonstrate that circular noise functions are enough to satisfy \(\ell \)-privacy on \(\mathcal {X}\) and equivalently on the entire space without any penalty in the utility. Afterward, we describe a large parametric space of noise functions that satisfy \(\ell \)-privacy on \(\mathcal {X}\), and show that this space has always an optimal member, regardless of \(\ell \) and \(\mathcal {X}\). We also investigate the recent notion of \(\epsilon \)-geo-indistinguishability as an instance of \(\ell \)-privacy and prove in this case that with respect to any increasing loss function, the planar Laplace noise function is optimal for any region having a nonzero area.  相似文献   

13.
We show that several reducibility notions coincide when applied to the Graph Isomorphism (GI) problem. In particular we show that if a set is many-one logspace reducible to GI, then it is in fact many-one \(\textsf{AC}^{0}\) reducible to GI. For the case of Turing reducibilities we show that for any k≥0 an \(\textsf{NC}^{k+1}\) reduction to GI can be transformed into an \(\textsf{AC}^{k}\) reduction to the same problem.  相似文献   

14.
15.
Using Bloch’s parametrization for qudits (d-level quantum systems), we write the Hilbert–Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in \(\mathbb {R}^{\Pi _{s=1}^{n}d_{s}^{2}-1}\), where \(d_{s}\) is the dimension for qudit s. Then, applying the generalized Gell–Mann’s matrices to generate \(\mathrm{SU}(d_{s})\), we use that result to obtain the Hilbert–Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, \(l_{1}\)-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.  相似文献   

16.
This paper provides a fast algorithm for Grobnerbases of homogenous ideals of F[x, y] over a finite field F. We show that only the 8-polynomials of neighbor pairs of a strictly ordered finite homogenours generating set are needed in the computing of a Grobner base of the homogenous ideal. It reduces dramatically the number of unnecessary 5-polynomials that are processed. We also show that the computational complexity of our new algorithm is O(N^2), where N is the maximum degree of the input generating polynomials. The new algorithm can be used to solve a problem of blind recognition of convolutional codes. This problem is a new generalization of the important problem of synthesis of a linear recurring sequence.  相似文献   

17.
Since the pioneering paper of Rosenthal a lot of work has been done in order to determine classes of games that admit a potential. First, we study the existence of potential functions for weighted congestion games. Let \(\mathcal{C}\) be an arbitrary set of locally bounded functions and let \(\mathcal{G}(\mathcal{C})\) be the set of weighted congestion games with cost functions in \(\mathcal{C}\). We show that every weighted congestion game \(G\in\mathcal{G}(\mathcal{C})\) admits an exact potential if and only if \(\mathcal{C}\) contains only affine functions. We also give a similar characterization for w-potentials with the difference that here \(\mathcal{C}\) consists either of affine functions or of certain exponential functions. We finally extend our characterizations to weighted congestion games with facility-dependent demands and elastic demands, respectively.  相似文献   

18.
The recognition of primitives in digital geometry is deeply linked with separability problems. This framework leads us to consider the following problem of pattern recognition : given a finite lattice set \(S\subset \mathbb {Z}^d\) and a positive integer n, is it possible to separate S from \(\mathbb {Z}^d \setminus S\) by n half-spaces? In other words, does there exist a polyhedron P defined by at most n half-spaces satisfying \(P\cap \mathbb {Z}^d = S\)? The difficulty comes from the infinite number of constraints generated by all the points of \(\mathbb {Z}^d\setminus S\). It makes the decidability of the problem non-straightforward since the classical algorithms of polyhedral separability can not be applied in this framework. We conjecture that the problem is nevertheless decidable and prove it under some assumptions: in arbitrary dimension, if the interior of the convex hull of S contains at least one lattice point or if the dimension d is 2 or if the dimension \(d=3\) and S is not in a specific configuration of lattice width 0 or 1. The proof strategy is to reduce the set of outliers \(\mathbb {Z}^d\setminus S\) to its minimal elements according to a partial order “is in the shadow of.” These minimal elements are called the lattice jewels of S. We prove that under some assumptions, the set S admits only a finite number of lattice jewels. The result about the decidability of the problem is a corollary of this fundamental property.  相似文献   

19.
We present and analyze a new hybridizable discontinuous Galerkin (HDG) method for the steady state Maxwell equations. In order to make the problem well-posed, a condition of divergence is imposed on the electric field. Then a Lagrange multiplier p is introduced, and the problem becomes the solution of a mixed curl–curl formulation of the Maxwell’s problem. We use polynomials of degree \(k+1\), k, k to approximate \({{\varvec{u}}},\nabla \times {{\varvec{u}}}\) and p respectively. In contrast, we only use a non-trivial subspace of polynomials of degree \(k+1\) to approximate the numerical tangential trace of the electric field and polynomials of degree \(k+1\) to approximate the numerical trace of the Lagrange multiplier on the faces. On the simplicial meshes, we show that the convergence rates for \(\varvec{u}\) and \(\nabla \times \varvec{u}\) are independent of the Lagrange multiplier p. If we assume the dual operator of the Maxwell equation on the domain has adequate regularity, we show that the convergence rate for \(\varvec{u}\) is \(O(h^{k+2})\). From the point of view of degrees of freedom of the globally coupled unknown: numerical trace, this HDG method achieves superconvergence for the electric field without postprocessing. Finally, we show that the superconvergence of the HDG method is also derived on general polyhedral elements. Numerical results are given to verify the theoretical analysis.  相似文献   

20.
In this paper, we consider the violation of Bell inequalities for quantum system \(\mathbb {C}^K\otimes \mathbb {C}^K\) (integer \(K\ge 2\)) with group theoretical method. For general M possible measurements, and each measurement with K outcomes, the Bell inequalities based on the choice of two orbits are derived. When the observables are much enough, the quantum bounds are only dependent on M and approximate to the classical bounds. Moreover, the corresponding nonlocal games with two different scenarios are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号