首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Similar to other European countries, mechanisms for the promotion of electricity generation from renewable energy sources (RESs) and combined heat and power (CHP) production have caused a significant growth in distributed generation (DG) in Spain. Low DG/RES penetration levels do not have a major impact on electricity systems. However, several problems arise as DG shares increase. Smarter distribution grids are deemed necessary to facilitate DG/RES integration. This involves modifying the way distribution networks are currently planned and operated. Furthermore, DG and demand should also adopt a more active role. This paper reviews the current situation of DG/RES in Spain including penetration rates, support payments for DG/RES, level of market integration, economic regulation of Distribution System Operators (DSOs), smart metering implementation, grid operation and planning, and incentives for DSO innovation. This paper identifies several improvements that could be made to the treatment of DG/RES. Key aspects of an efficient DG/RES integration are identified and several regulatory changes specific to the Spanish situation are recommended.  相似文献   

2.
The curbing of greenhouse gases (GHG) is an important issue on the international political agenda. The substitution of fossil fuels by renewable energy sources is an often-advocated mitigation strategy. Wind energy is a potential renewable energy source. However, wind energy is not reliable since its electricity production depends on variable weather conditions. High wind energy penetration rates lead to losses due to power plant operation adjustments to wind energy. This research identifies the potential energetic benefits of integrated hydrogen production in electricity systems with high wind energy penetration. This research concludes that the use of system losses for hydrogen production via electrolysis is beneficial in situations with ca. 8 GW or more wind energy capacity in the Netherlands. The 2020 Dutch policy goal of 6 GW will not benefit from hydrogen production in terms of systems efficiency. An ancillary beneficial effect of coupling hydrogen production with wind energy is to relieve the high-voltage grid.  相似文献   

3.
This paper presents an investigation of a hybrid DC/AC integration paradigm to establish microgrids (MGs) by using a conventional three-phase local power delivery system. This approach adds an additional DC power line to the local power distribution system in order to collect energy generated by distributed domestic renewable sources. The local renewable distributed generation (DG) works in conjunction with the conventional grid utility to reduce the power draw from the grid. Researchers designed an energy conversion station to mix energy from the local DGs with energy from the grid utility. This approach, therefore, uses a continuous energy mixing strategy for DC integration of local generation and grid energy to supply energy to MG consumers via the conventional three-phase power distribution system. Thus, local distributed renewable generators do not have to contend with AC integration problems, such as AC stability and line synchronization. This approach can facilitate the transformation of conventional local power distribution systems into reliable MGs in an affordable way for stakeholders and it is a step towards construction of future smart grids.  相似文献   

4.
Energy crisis and the global impetus to “go green” have encouraged the integration of renewable energy resources, plug-in electric vehicles, and energy storage systems to the grid. The presence of more than one energy source in the grid necessitates the need for an efficient energy management system to guide the flow of energy. Moreover, the variability and volatile nature of renewable energy sources, uncertainties associated with plug-in electric vehicles, the electricity price, and the time-varying load bring new challenges to the power engineers to achieve demand-supply balance for stable operation of the power system. The energy management system can effectively coordinate the energy sharing/trading among all available energy resources, and supply loads economically in all the conditions for the reliable, secure, and efficient operation of the power system. This paper reviews the framework, objectives, architecture, benefits, and challenges of the energy management system with a comprehensive analysis of different stakeholders and participants involved in it. The review paper gives a critical analysis of the distributed energy resources behavior and different programs such as demand response, demand-side management, and power quality management implemented in the energy management system. Different uncertainty quantification methods are also summarized. This review paper also presents a comparative and critical analysis of the main optimization techniques used to achieve different energy management system objectives while satisfying multiple constraints. Thus, the review offers numerous recommendations for research and development of the cutting-edge optimized energy management system applicable for homes, buildings, industries, electric vehicles, and the whole community.  相似文献   

5.
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck–boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.   相似文献   

6.
From the perspective of global warming mitigation and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all-electric apartment houses or residence such as DC smart houses are increasing. However, due to the fluctuating power from renewable energy sources and loads, supply-demand balancing of power system becomes problematic. Smart grid is a solution to this problem. This paper presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuation. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuation, it is possible to reduce the electric power consumption and the cost of electricity. This system consists of photovoltaic generator, heat pump, battery, solar collector, and load. To verify the effectiveness of the proposed system, results are used in simulation presented.  相似文献   

7.
Due to the shortage of fossil energy and the pollution caused by combustion of fossil fuels, the proportion of renewable energy in power systems is gradually increasing across the world. Accordingly, the capacity of power systems to accommodate renewable energy must be improved. However, integration of a large amount of renewable energy into power grids may result in network congestion. Hence, in this study, optimal transmission switching (OTS) is considered as an important method of accommodating renewable energy. It is incorporated into the operation of a power grid along with deep peak regulation of thermal power units, forming an interactive mode of coordinated operation of source and network. A stochastic unit commitment model considering deep peak regulation and OTS is established, and the role of OTS in promoting the accommodation of renewable energy is analyzed quantitatively. The results of case studies involving the IEEE 30-bus system demonstrate that OTS can enable utilization of the potential of deep peak regulation and facilitate the accommodation of renewable energy.  相似文献   

8.
Climate change concerns due to the rising amounts of the carbon gas in the atmosphere have in the last decade or so initiated a fast pace of technological advances in the renewable energy industry. Such developments in technology and the move towards cleaner sources of energy have made distributed generation (DG) from renewable resources more desirable. However, it is a known fact that rising penetrations of DG can have adverse impacts on the grid structure and its operation. The microgrid concept is a solution proposed to control the impact of DG and make conventional grids more suitable for large scale deployments of DG. Covering many aspects of the power systems and power electronics fields, microgrids have become a very popular research field. This paper reviews the background and the concept of a microgrid, the current status of the literature, on-going research projects, and the relevant standards. It also presents a review of the microgrid pilot projects around the world in further detail and discusses the potential avenues for further research.  相似文献   

9.
The paper deals with the multilevel converters control strategy for renewable energy resources integration in distribution grids. The proposed control scheme ensures the injection of the generated power in the distribution grid with fast dynamic response, while providing an additional active power filtering capability providing the required harmonic and reactive currents to the considered non-linear loads. The proposed control scheme is applicable to a general multilevel converter and to any types of the renewable energy resources. The control scheme is validated by means of simulations with a three-level diode-clamped converter which interfaces a wind power generation system to a distribution grid supplying non-linear loads. From extensive simulation results, high performance of this control strategy in renewable energy application is demonstrated with reduced total harmonic distortion, increased power factor and compensated load’s reactive powers.  相似文献   

10.
With the continuous development of power electronic devices, intelligent control systems, and other technologies, the voltage level and transmission capacity of voltage source converter (VSC)-high-voltage direct current (HVDC) technology will continue to increase, while the system losses and costs will gradually decrease. Therefore, it can be foreseen that VSC-HVDC transmission technology will be more widely applied in future large-scale renewable energy development projects. Adopting VSC-HVDC transmission technology can be used to overcome issues encountered by large-scale renewable energy transmission and integration projects, such as a weak local power grid, lack of support for synchronous power supply, and insufficient accommodation capacity. However, this solution also faces many technical challenges because of the differences between renewable energy and traditional synchronous power generation systems. Based on actual engineering practices that are used worldwide, this article analyzes the technical challenges encountered by integrating large-scale renewable energy systems that adopt the use of VSC-HVDC technology, while aiming to provide support for future research and engineering projects related to VSC-HVDC-based large-scale renewable energy integration projects.  相似文献   

11.
In the modern world, only conventional energy resources cannot fulfil the growing energy demand. Electricity is a fundamental building block of a technological revolution. Today, most of the electricity demand is met by the burning of fossil fuels but at the cost of adverse environmental impact. In order to bridge the gap between electricity demand and supply, nonconventional and eco-friendly means of energy generation are considered. Renewable energy systems (RESs) offer an adequate solution to mitigate the challenges originated due to greenhouse gasses (GHG). However, they have an unpredictable power generation with specific site requirements. Grid integration of RESs may lead to new challenges related to power quality, reliability, power system stability, harmonics, subsynchronous oscillations (SSOs), power quality, and reactive power compensation. The integration with energy storage systems (ESSs) can reduce these complexities that arise due to the intermittent nature of RESs. In this paper, a comprehensive review of renewable energy sources has been presented. Application of ESSs in RESs and their development phase has been discussed. Role of ESSs in increasing lifetime, efficiency, and energy density of power system having RESs has been reviewed. Moreover, different techniques to solve the critical issues like low efficiency, harmonics, and inertia reduction in photovoltaic (PV) systems have been presented. Unlike most of the available review papers, this article also investigates the impact of FACTS technology in RESs-based power system using multitype flexible AC transmission system (FACTS) controllers. Three simulation models have been developed in MATLAB/Simulink. The results show that FACTS devices help to maintain the stability of RESs integrated power system. This review paper is believed to be of potential benefit for researchers from both the industry and academia to develop better understanding of challenges and solution techniques for REs-based power systems and future research dimensions in this area.  相似文献   

12.
When it comes to the energy planning, computer programs like H2RES are becoming valuable tools. H2RES has been designed as support for simulation of different scenarios devised by RenewIsland methodology with specific purpose to increase integration of renewable sources and hydrogen into island energy systems. The model can use wind, solar, hydro, biomass, geothermal as renewable energy sources and fossil fuel blocks and grid connection with mainland as back up. The load in the model can be represented by hourly and deferrable electricity loads of the power system, by hourly heat load, by hydrogen load for transport and by water load depending on water consumption. The H2RES model also has ability to integrate different storages into island energy system in order to increase the penetration of intermittent renewable energy sources or to achieve a 100% renewable island. Energy storages could vary from hydrogen loop (fuel cell, electrolyser and hydrogen storage) to reversible hydro or batteries for smaller energy systems. The H2RES model was tested on the power system of the Island of Porto Santo – Madeira, the islands of Corvo, Graciosa, and Terrciera – Azores, Sal Island – Cape Verde, Portugal, the Island of Mljet, Croatia and on the energy system of the Malta. Beside energy planning of the islands, H2RES model could be successfully applied for simulation of other energy systems like villages in mountain regions or for simulation of different individual energy producers or consumers.  相似文献   

13.
Nowadays, the penetration of photovoltaic (PV) solar power generation in distributed generation (DG) systems is growing rapidly. This condition imposes new requirements to the operation and management of the distribution grid, especially when high integration levels are achieved. Under this scenario, the power electronics technology plays a vital role in ensuring an effective grid integration of the PV system, since it is subject to requirements related not only to the variable source itself but also to its effects on the stability and operation of the electric grid. This paper proposes an enhanced interface for the grid connection of solar PV generation systems. The topology employed consists of a three-level cascaded Z-source inverter that allows the flexible, efficient and reliable generation of high quality electric power from the PV plant. A full detailed model is described and its control scheme is designed. The dynamic performance of the designed architecture is verified by computer simulations.  相似文献   

14.
Wave energy is an important renewable energy source. Previous studies of wave energy conversion (WEC) have focused on the maximum power take-off (PTO) techniques of a single machine. However, there is a lack of research on the energy and power quality of wave farm systems. Owing to the pulsating nature of ocean waves and popular PTO devices, the generated electrical power suffers from severe fluctuations. Existing solutions require extra energy storage and overrated power converters for wave power integration. In this study, we developed a master-slave wave farm system with rotor inertia energy storage; this system delivers self-smoothed power output to the grid and reduces the number of converters. Two control methods based on the moving average filter (MAF) and energy filter (EF) are proposed to smooth the output power of wave farms. RTDS simulations show that the proposed systems and control methods facilitate simple and smooth grid integration of wave energy.  相似文献   

15.
The demand of electric energy is increasing globally, and the fact remains that the major share of this energy is still being produced from the traditional generation technologies. However, the recent trends, for obvious reasons of environmental concerns, are indicating a paradigm shift towards distributed generation (DG) incorporating renewable energy resources (RERs). But there are associated challenges with high penetration of RERs as these resources are unpredictable and stochastic in nature, and as a result, it becomes difficult to provide immediate response to demand variations. This is where energy storage systems (ESSs) come to the rescue, and they not only can compensate the stochastic nature and sudden deficiencies of RERs but can also enhance the grid stability, reliability, and efficiency by providing services in power quality, bridging power, and energy management. This paper provides an extensive review of different ESSs, which have been in use and also the ones that are currently in developing stage, describing their working principles and giving a comparative analysis of important features and technical as well as economic characteristics. The wide range of storage technologies, with each ESS being different in terms of the scale of power, response time, energy/power density, discharge duration, and cost coupled with the complex characteristics matrices, makes it difficult to select a particular ESS for a specific application. The comparative analysis presented in this paper helps in this regard and provides a clear picture of the suitability of ESSs for different power system applications, categorized appropriately. The paper also brings out the associated challenges and suggests the future research directions.  相似文献   

16.
With the increasing penetration levels of intermittent and fluctuating energy sources such as wind generating systems in the electricity grid, resulting voltage fluctuations and flicker can be expected to become an important power quality considerations. Due to significant bidirectional power flows resulting from large renewable power generation systems connected to downstream, voltage fluctuations may propagate from downstream to upstream. The work presented in this paper investigates and characterises flicker emission and propagation resulting from fluctuating generating sources connected to a distribution network. Mathematical models are developed for flicker emission under different generator control strategies and flicker propagation to upstream network. These emission and propagation characteristics are investigated and verified using a test network comprised of a wind farm. The study has revealed that flicker emission characteristics are influenced in a detrimental manner by the reactive power control strategy of the generator and the flicker attenuation characteristics are influenced by the various load types connected to the distribution feeder.  相似文献   

17.
18.
The European Energy Policy promotes renewable energy sources and energy efficiency as means to mitigate environmental impact, increase security of supply and ensure economic competitiveness. As a result, the penetration levels of distributed generation (DG) in electricity networks are bound to increase. Distribution networks and distribution system operators (DSOs) will be especially affected by growing levels of DG. This paper reviews the current regulation of distribution in the European Union Member States, focusing on those aspects that might hinder the future integration of DG. Several regulatory issues that may hinder a successful integration of DG have been identified. Recommendations to improve the current situation are proposed. Regarding economic signals sent to DG, connection charges and cost-reflective use-of-system charges together with incentives to provide ancillary services are the key aspects. Concerning DSOs regulation, unbundling from generation and supply according to the European Electricity Directive, incentives for optimal planning and network operation considering DG, including energy losses and quality of service, and innovation schemes to migrate to active networks are the most relevant topics.  相似文献   

19.
S. Conti  S. Raiti 《Solar Energy》2007,81(12):1473-1481
Connections of distributed generation (DG) systems to distribution networks are increasing in number, though they may often be associated with the need of costly grid reinforcements or new control issues to maintain optimal operation. Appropriate analysis tools are required to check distribution networks operating conditions in the evolving scenario. Load flow (LF) calculations are typically needed to assess the allowed DG penetration level for a given network in order to ensure, for example, that voltage and current limits are not exceeded.

The present paper deals with the solution of the LF problem in distribution networks with photovoltaic (PV) DG. Suitable models for prediction of the active power produced by PV DG units and the power absorbed by the loads are to be used to represent the uncertainty of solar energy availability and loads variation. The proposed models have been incorporated in a radial distribution probabilistic load flow (PLF) program that has been developed by using Monte Carlo techniques. The developed program allows probabilistic predictions of power flows at the various sections of distribution feeders and voltage profiles at all nodes of a network.

After presenting theoretical concepts and software implementation, a practical case is also discussed to show the application of the study in order to assess the maximum PV peak power that can be installed into a distribution network without violating voltage and current constraints. A comparison between Deterministic Load Flow (DLF) and PLF analyses is also performed.  相似文献   


20.
Decentralised optimisation of cogeneration in virtual power plants   总被引:1,自引:0,他引:1  
Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES & DG). Those ”smart grids” should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called “virtual power plant”. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity.There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method.The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号