首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Noncorrosive K2SO4 is found to be able to activate the chestnut shell carbon to oxygen-enriched porous carbons. Chestnut shells are activated by K2SO4. The structure, texture, chemical state of surface of samples and morphology are analyzed via X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectra, transmission electron microscopy and scanning electron microscopy, respectively. With the optimum amount of K2SO4 (m(K2SO4)/m(C) = 1.8), higher specific surface area (SSA, 1412 m2 g−1) and total pore volume (0.75 m2 g−1) are obtained. The prepared carbon samples exhibit a hierarchical textural structure making up of micropores, mesopores and macropores. More importantly, a large amount of oxygen defects, as high as 37.7%, and a small amount of sulfur element (0.31%-0.79%) are successfully introduced on the surface of the carbons. The activation mechanism of K2SO4 is also investigated via thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC), which put it down to the high-temperature redox reaction between C and K2SO4. Owing to the high SSA, the composition of pore, and the abundant surface defects, the activated porous carbons originated from chestnut shell carbon possess highly enhanced capacitive properties. At 0.1 A/g, the specific capacitance reaches 265 F/g, and retains 92% of its starting value after 10 000 cycles at 10 A/g. In general, K2SO4 is a promising noncorrosive alternative to the conventional KOH activator.  相似文献   

2.
Porous carbon materials are the most widely used electrode materials in Electric Double Layer Supercapacitor (EDLS). Optimize specific surface area, improving hierarchical pores structure, and doping heteroatoms are all important methods to improve the capacitance performance of electrodes. Herein, we synthesize walnut shell-derived hierarchical porous carbon (WSPC) with cost-effective and well-developed pore for electrochemical energy storage via simple phosphoric acid-assisted activation method. The final porous carbon products have perfect microporous structure, abundant heteroatom functional groups (the atomic content ratio of nitrogen, phosphorus and sulfur reaches 10.3%), and high specific surface area and pore volume (up to 2583 m2 g?1 and 1.236 cm3 g?1, respectively). In the three-system, the electrode shows an optimal specific capacitance of up to 332 F g?1 and excellent rate performance. In the symmetric system, the symmetric device WSPC//WSPC shows a maximum gravimetric specific energy of ~14.08 Wh kg?1. And the device still has a specific energy of 9.75 Wh kg?1 even under the high gravimetric specific power of 7 kW kg?1. In addition, the device has excellent cycle stability and retains an initial specific capacitance of 90.2% after 8000 galvanostatic charge-discharge (GCD) cycle. In summary, these outstanding results suggest the biomass derived porous carbon possessing the potential and will show great commercial value for the fabrication of high performance supercapacitors.  相似文献   

3.
Porous carbon spheres materials display huge potential for energy storage, but their general synthesis need chemical activation agent with highly corrosive to create pores. In this work, a simple, environment-friendly and less time-demanding method is used to prepared porous carbon spheres using K2FeO4 as activation agent and waste solution as the precursor. The K2FeO4 employ in this work acts both as an activating agent and a catalyst. In addition, replacing KOH with K2FeO4 does not only reduce the corrosion of equipment but also increases the content of oxygen. The optimized porous carbon spheres with high specific surface area, hierarchical pore structure and surface heteroatom can deliver a high specific capacitance of 260 F g−1 at 0.1 A g−1 and good cycling stability (90% retention after 15000 cycles at 5 A g−1). Furthermore, the all-solid-state symmetric supercapacitors fabricated based on as-prepared samples exhibit good electrochemical performance in the PVA/KOH electrolyte. This work offers a green route to convert waste solution into porous carbon spheres, which are promising candidate material for supercapacitors to energy storage.  相似文献   

4.
Waste sugar solution is a by-product in the process of manufacturing vitamin C. Nowadays, the unused industrial waste residues are transformed into high efficient energy storage devices, such as supercapacitors electrodes, which are worth exploring because they are consistent with the concept of green and sustainable development. In this paper, a nitrogen-doped hierarchical porous carbon are obtained via pre-carbonization and KOH activation. The as-prepared material, possessed proper pore size distribution, large specific surface area and nitrogen-doping, exhibits good electrochemical performance, such as a high specific capacitance of 342 F g−1 (0.1 A g−1), good stability with 95% capacitance retention after 15,000 cycles in 6 M KOH. Moreover, the supercapacitors deliver a high energy density of 25.6 and 65.9 W h kg−1 in the 1 M Na2SO4 and EMIMBF4, respectively. The good electrochemical performance illustrates that the nitrogen-doped hierarchically porous carbon derived from the waste sugar solution is a potential candidate for energy storage.  相似文献   

5.
In the present work, nitrogen doped hierarchically activated porous carbon (APC) samples have been synthesized via single step scalable method using ethylene di-amine tetra acetic acid (EDTA) as precursor and KOH as activating agent. Activated porous carbons with different pore sizes have been developed by varying the activation temperature. SEM, TEM and SAXS analysis suggest that with variation of activation temperature, a hierarchical porous structure with interconnected meso-pore and micro pores has been achieved. The sufficiently high surface area of the synthesized materials provides active sites to enhance the diffusion of ions between the electrolyte and the carbon electrodes. The electrode prepared at 800 °C activated sample exhibited highest specific capacitance of 274 Fg-1 in two electrode setup, at a current density of 0.1 Ag-1 in 1 M aqueous H2SO4. Along with this, it showed maximum energy density of 9.5 Whkg?1 at a power density of 64.5 Wkg-1. The remarkable electrochemical performance reveals that the synthesized nitrogen doped activated carbon electrodes derived from EDTA can be tuned to have optimum pore structure and pore size distribution for better electrochemical performance, so it can be considered as a potential electrode material for applications in electrochemical energy storage.  相似文献   

6.
The development of electric vehicles is increasing the demand for supercapacitors, for which carbon materials can make excellent electrodes. In this study, waste scraps of polyimide (PI) film were used to fabricate several flaky porous carbon materials for use as supercapacitor electrodes. The pore structure and functional groups of the porous carbons were tailored by KOH activation. The relationships between pore structure, the carbon matrix, functional groups, and electrochemical performance were investigated via N2 adsorption, XRD, Raman spectroscopy, FT-IR, XPS, and electrochemical measurements. The flaky porous carbon materials have a graded distribution of hierarchical pore structures and are rich in O/N functional groups. They have an outstanding capacitance retention rate and a high specific capacitance of 482 F g?1, which is higher than those of PI film-based porous carbons prepared by physical activation and of commercial activated carbon electrodes. Their flaky structure endows them with lower impedance than commercial AC. The materials were used to fabricate electrodes for symmetrical supercapacitors, which displayed high energy densities and excellent cycling stability. This work provides an environmentally benign strategy for the re-use of waste PI film.  相似文献   

7.
Carbonization and activation have been exploited as an economic and efficient approach toward the production of porous activated carbon monolith derived from green stem of cassava (GSC). In addition, ZnCl2 was used as a chemical activator agent at various concentrations, therefore serving as a key factor in the development of porous carbon. The carbonization process (N2) was integrated with physical activation (CO2), and then N2 sorption, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray were examined to evaluate the specific surface area, pore structure characteristic, morphology structure, crystallinity, and the surface element, respectively. Furthermore, cyclic voltammetry was used to measure the electrochemical performance, through a two-electrode system in 1M H2SO4. Therefore, the synthesized porous activated carbon exhibits a micropores-mesopores combination, and the optimized sample demonstrated nanosheet and nanofiber structures. The results show a high electrochemical behavior in 1M H2SO4 electrolytes, by the electrodes, with specific capacitance, energy, and power densities of 164.58 F g−1, 22.86 Wh kg−1, and 82.38 W kg−1, respectively. This route confirms the opportunity of using novel GSC in the production of porous carbon monolith with nanosheet/nanofiber structure for supercapacitor applications.  相似文献   

8.
In the present paper, starch was used as raw material to prepare carbon material with low-temperature hydrothermal route and hierarchical three-dimensional cross-linked porous carbon was successfully synthesized with the help of a small amount of graphene for high-performance supercapacitors. It's found that presence of graphene is a crucial condition for the formation of 3D porous carbon and graphene acts as a skeleton in the porous carbon. This kind of carbon material exhibited very high surface area of 1887.8 m2 g−1 and delivered excellent electrochemical performance. Its specific capacitance can reach 141 F g−1 at 0.5 A g−1 and more importantly, after 10,000 cycles 98.6% of initial specific capacitance can be maintained. To explore the practical application of the 3D porous carbon, an asymmetric supercapacitor coin-type device was assembled with 3D porous carbon and graphene as electrode materials in organic electrolyte. The constructed device exhibited high energy density of 48.5 Wh·kg−1 at a power density of 1.5 kW kg−1 and still maintains 39.625 Wh·kg−1 under the high power density (15 kW kg−1). These results will promote the rapid development of 3D porous carbon prepared by low-temperature route and the application in supercapacitors.  相似文献   

9.
Biomass-derived multielement-co-doped carbon materials with ultrahigh active-sites density and unique physicochemical properties hold great promise for oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. Agaricus bisporus residue as a type of biomass waste is produced after microbial growth on biomass substrates, contributing to its natural multidimensional framework and nutrient elements residual. Based on this advantage, this paper further combined with (NH4)3PO4 and FeCl3·6H2O to provide N, P, and Fe. Finally, the Fe/N co-doped carbon catalyst with hierarchical porous structure (SN-Fe-ZA) was fabricated by a facile hydrothermal-pyrolysis synthesis route. The characteristic of SN-Fe-ZA exhibited an obvious honeycomb porous structure, high nitrogen doping content of 2.36 at%, and its specific surface area was up to 1646.4 m2·g−1 with abundant micro-/mesoporous. Electrochemical measurements further indicated that SN-Fe-ZA possessed a distinct ORR electrocatalytic activity in alkaline solution. Compared with the electrochemical parameters of commercial Pt/C electrocatalyst, SN-Fe-ZA had the equivalent onset potential (0.968 V) and half-wave potential (0.820 V). Besides, it showed a more excellent electrochemical stability and stronger methanol-tolerant. This research proposed a promising approach to prepare hierarchical porous and multielement-co-doped catalyst from renewable biomass waste as effective cathode electrocatalytic materials for alkaline fuel cells.  相似文献   

10.
Graphitic porous carbon sheets (GPCS), which were synthesized at a low temperature of 900°C by KOH chemical activation technique, possess a specific surface area of 1246 m2 g-1 with high pore volume. The size of the pores varied in micro-mesopore regions and exhibited three-dimensional sheet-like morphology composed of multilayered graphene sheets with an inter planar distance of 0.360 nm. The GPCS material was tested as anode for Li-ion battery (LIB) application in half cell mode (vs Li+/Li). The fabricated GPCS electrode shows excellent electrochemical properties in comparison with commercial graphite such as a high discharge specific capacity of 1022 mA h g-1 after 10 cycles at 100 mA g-1 and excellent specific capacity retention of 170 mA h g-1 at a very high current rate of 8000 mA g-1 and also retains a high capacity of 541 mA h g-1 after 250 cycles at 500 mA g-1, which suggests that GPCS material can be a promising electrode for LIB application. A brief comparison with commercial graphite and various carbonaceous materials from literature demonstrated that the GPCS electrode was potential material for high rate LIBs.  相似文献   

11.
Selective fabrication of carbon materials with developed specific surface area and hierarchical porous structure is essential for high-performance carbon-based supercapacitors. Direct carbonization of organic acid salts represents a strategy that can produce porous carbon with high specific surface area, but it is still hindered by low carbon yield, impeding its large-scale application. Herein, a biomass-derived hierarchical porous carbon with large specific surface area is prepared via a facile one-pot calcination method. The optimal SCPC-4 sample presents three-dimensional interconnected network structure and plentiful heteroatom content. Hence, it delivers a large specific capacitance of 321 F g?1 at a current density of 1 A g?1, and negligible capacitance loss after 10,000 cycles at 10 A g?1. In addition, the assembled SCPC-4 based symmetric supercapacitor exhibits an energy density of 21.2 Wh kg?1 at a power density of 900 W kg?1. This cost-effective binary biomass carbon source route provides a great possibility for the mass production of high-yield porous carbon materials.  相似文献   

12.
The honeycomb-like porous carbon was prepared using glucose as carbon source and solid core mesoporous shell (SCMS) silica as templates. The material was characterized by physical and electrochemical methods. The results showed that the honeycomb-like porous carbon was consisted of hollow porous carbon (HPC) which gave an ultrahigh BET surface area of 1012.97 m2 g−1 and pore volume of 2.19 cm3 g−1. The porous walls of the HPC were formed in the mesoporous shells of the silica templates. The HPC was used as the support to load Pd nanoparticles (Pd/HPC) for alcohol electrooxidation. It was highly active for methanol, ethanol and isopropanol electrooxidation. The peak current density for ethanol electrooxidation on Pd/HPC electrode was five times higher than that on Pd/C electrode at the same Pd loadings. The mass activity for ethanol electrooxidation was 4000 A g−1 which is much higher compared to the data reported in the literature. The highly porous structure of such HPC can be widely used as support for uniform dispersing metal nanoparticles to increase their utilization as electrocatalysts.  相似文献   

13.
Compared with symmetric supercapacitors, asymmetric supercapacitors are been widely applied in energy storage devices because of delivering an impressible energy density. Herein, a simple temple strategy was used to fabricate the porous hollow carbon spheres (PHCS) with high specific surface area of 793 m2 g?1, large pore volume of 1.0 cm3 g?1 and pore size distribution from micropores to mesopores, serving as the capacitive electrodes of asymmetric supercapacitors. Subsequently, manganese dioxide (MnO2) was impregnated into the PHCS to form a faradic electrode with a promising performance, owing to a synergistic effect between high capacity MnO2 and conductive PHCS. Furthermore, the flexible asymmetric solid‐state devices were constructed with PHCS anode, PHCS@MnO2 cathode, and PVA/LiCl electrolyte, extending a voltage window up to 1.8 V. The extensive voltage window would lead to an increased energy density. In our case, the flexible asymmetric sandwich exhibit excellent electrochemical performance in terms of a high energy density capacity of 26.5 W·h kg?1 (900 W kg?1) and superior cycling performance (10 000 cycles). Therefore, the developed strategy provides a strategy to achieve the PHCS‐based composites for the application in the asymmetric solid‐state supercapacitors, which will enable a widely field of flexible energy storage devices.  相似文献   

14.
Porous carbons as electrode materials are highly desired for use in energy storage/conversion devices. Herein, the development of a series of highly porous nitrogen and oxygen co-doped carbons by using pea protein (PP) as a cost-effective, sustainable and nitrogen-rich precursor is reported. Pea protein derived carbons (PPDCs) have been prepared by applying a straightforward two-step synthetic route including pyrolysis and KOH-chemical activation. Potassium hydroxide has been employed to generate porosity and introduce oxygen functionalities into the framework of carbon. The heteroatoms doping content and porosity parameters have been tuned by varying the synthesis temperature and activator to precursor ratio. The carbon obtained with optimal synthetic parameters (T = 800 °C and KOH/Precursor = 4) featured the highest surface area, the maximal pore volume and N-/O doping level of 3500 m2 g?1, 1.76 cm3 g?1, and 2.5-/17.9 at%, respectively. PPDC-4-800 as supercapacitor presented a very high specific capacitance (413 F g?1 at 1.0 A g?1 in 1 M KOH), remarkable cycling stability (92% retention after 20000 cycles) and outstanding rate capability (210 F g?1 at 30 A g?1). The cooperative effects of the well-developed porous architecture and surface modification of PPDCs resulted in enhanced electrochemical performances, suggesting their potential application for energy storage devices.  相似文献   

15.
Novel magnetic tubular carbon nanofibers (MTCFs) are prepared through the combination technique of hypercrosslinking, control extraction, and carbonization. The diameter of MTCFs is mainly concentrated between 90 and 120 nm, and the average tube diameter is about 30 nm. A trace amount of Fe3O4 exists inside the MTCFs with a particle size of 3 nm, which is formed by in situ conversion of the catalyst (FeCl3) for the hypercrosslinking reaction. The MTCFs with high surface area (448.74 m2 g?1) and porous wall are used as anode material for lithium‐ion batteries. The electrochemical properties of MTCFs are compared, and tubular carbon nanofibers (TCFs) prepared by the complete extraction. Electrochemical analysis shows that the introduction of Fe3O4 nanoparticles makes MTCFs have higher reversible capacity and better rate performance. MTCFs exhibit high reversible specific capacity of 1011.7 mAh g?1 after 150 cycles at current density of 100 mA g?1. Even at high current density of 3000 mA g?1, a remarkable reversible capacity of 270.0 mAh g?1 is still delivered. Thus, the novel MTCFs show potential application value in anode material for high‐performance lithium‐ion battery.  相似文献   

16.
In this paper we report the physical investigation and the electrochemical performance of the carbon black SC3 from Cabot Corporation. The SC3 carbon black was investigated in terms of BET surface area, pore size distribution, resistivity and morphology. Composite electrodes containing SC3 as active material were prepared and used for the realization of electrochemical double layer capacitor (EDLC) and lithium-ion capacitor (LIC). In EDLC, at 5 mA cm−2 charge-discharge currents, the carbon black displays a specific capacity of 40 mAh g−1 and a specific capacitance of 115 F g−1. It also displays a very good cycling stability for over 50,000 cycles and excellent performance retention at currents up to 50 mA cm−2. The performance retention at high currents outstandingly differentiates this carbon black from a few commercially available EDLC-grade activated carbons. Because of the high specific capacity of SC3, the carbon black electrodes were also used in combination with LiFePO4 electrodes in LIC. The results of this study indicate that SC3 carbon black is an interesting carbonaceous candidate for the realization of LIC.  相似文献   

17.
Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific double layer capacitance of ca. 120 F g−1 due to their large surface areas. In addition, the large capacitance was still obtained at a large current density up to 10 A g−1, which satisfies demands from the high power application such as hybrid electric vehicles. Capacitance analysis of the hierarchical porous structures revealed the contribution of meso/macropores and micropore to the electric double layer capacitance to be 8.4 and 8.1 μF cm−2, respectively. The results indicated electric double layer is formed even when solvated ions are larger than pore diameters.  相似文献   

18.
Porous carbon nanofibers (CNFs) enriched with the graphitic structure were synthesized by thermal decomposition from a mixture containing polyethylene glycol and nickel chloride (catalyst). The textural and electrochemical properties of porous CNFs were systematically compared with those of commercially available multi-walled carbon nanotubes (MWCNTs). The high ratio of mesopores and large amount of open edges of porous CNFs with a higher specific surface area, very different from that of MWCNTs, are favorable for the penetration of electrolytes meanwhile the graphene layers of porous CNFs serve as a good electronic conductive medium of electrons. The electrochemical properties of porous CNFs and MWCNTs were characterized for the application of supercapacitors using cyclic voltammetry, galvanostatic charge–discharge method, and electrochemical impedance spectroscopic analyses. The porous CNFs show better capacitive performances (CS = 98.4 F g−1 at 25 mV s−1 and an onset frequency of behaving as a capacitor at 1.31 kHz) than that of MWCNTs (CS = 17.8 F g−1 and an onset frequency at 1.01 kHz). This work demonstrates the promising capacitive properties of porous CNFs for the application of electrochemical supercapacitors.  相似文献   

19.
Polymeric carbon/activated carbon aerogels were synthesized through sol-gel polycondensation reaction followed by the carbonization at 800 °C under Argon (Ar) atmosphere and subsequent physical activation under CO2 environment at different temperatures with different degrees of burn-off. Significant increase in BET specific surface area (SSA) from 537 to 1775 m2g1 and pore volume from 0.24 to 0.94 cm3g1 was observed after physical activation while the pore size remained constant (around 2 nm). Morphological characterization of the carbon and activated carbons was conducted using X-ray diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of thermal treatment (surface cleaning) on the chemical composition of carbon samples.Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyse the capacitive and resistive behaviour of non-activated/activated/and surface cleaned activated carbons employed as electroactive material in a two electrode symmetrical electrochemical capacitor (EC) cell with 6 M KOH solution used as the electrolyte.CV measurements showed improved specific capacitance (SC) of 197 Fg1 for activated carbon as compared to the SC of 136 Fg1 when non-activated carbon was used as electroactive material at a scan rate of 5 mVs−1. Reduction in SC from 197 Fg1 to 163 Fg1 was witnessed after surface cleaning at elevated temperatures due to the reduction of surface oxygen function groups.The result of EIS measurements showed low internal resistance for all carbon samples indicating that the polymeric carbons possess a highly conductive three dimensional crosslinked structure. Because of their preferred properties such as controlled porosity, exceptionally high specific surface area, high conductivity and desirable capacitive behaviour, these materials have shown potential to be adopted as electrode materials in electrochemical capacitors.  相似文献   

20.
The intent of designing and exploring novel active electrode materials is to enhance the electrochemical performance of supercapacitors. Herein, a hierarchical structure of nickel-cobalt-sulfide nanostructures (NiCo2S4) decorated on the electrospun N-doped carbon nanofiber (CNF), NiCo2S4@CNF, is manipulated using a one-step and simple hydrothermal approach. The fabricated hierarchical structure of the NiCo2S4@CNF is featured by a large surface area and a high porosity that serve as ion diffusion channels. Therefore, it manifests high specific capacitance and specific capacity values of 377.2 C g?1 and 754.4 F g?1 at a current density of 1 A g?1, respectively. Furthermore, a NiCo2S4@CNF//CNF hybrid supercapacitor in which a positive electrode of NiCo2S4@CNF is assembled with a negative electrode of CNF to estimate the electrochemical performance of the NiCo2S4@CNF. As a result, the device has a superior energy density of 65.6 and 52.5 Wh kg?1 at a power density of 665 and 1313.8 W kg?1, respectively. Moreover, the device reveals good stability with capacitance retention of 72% after 3000 charge/discharge cycles. These outstanding results enable the designed hierarchical structure of the NiCo2S4@CNF to be a promising electrode material for supercapacitors (SCs) applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号