首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Amorphous/nanocrystalline Si3N4/TiN nanostructured multilayer films were fabricated by radio-frequency reactive magnetron sputtering. The microstructure and properties of these films were measured using an X-ray diffractometer, X-ray photoelectron spectroscope, high-resolution transmission electron microscopy and nanoindenter. The superhardness effect was found in Si3N4/TiN multilayers. The hardness of Si3N4/TiN multilayers is affected not only by modulation periods, but also by layer thickness ratio and deposition temperature. The hardness value is about 40% higher than the value calculated from the rule of mixtures at a deposition temperature of 500 °C and a layer thickness ratio (lSi3N4/lTiN) of 3/1. The hardening mechanisms in this system are discussed in the light of our experimental results. Results of calculation of the theoretical stress distribution in the multilayers suggests that alternating stress fields caused by thermal mismatching between Si3N4 and TiN is one of the main reasons for the superhardness effect observed in Si3N4/TiN multilayers.  相似文献   

2.
EUV lithography is the most promising technique for the fabrication of semiconductor structures below 50 nm. This requires the use of reflecting multilayers as optical elements. These multilayers must have reflectances as high as possible since it determines the efficiency of the technique and therefore the throughput of a future chip fab. In this work we present investigations on the interface quality of Mo/Si multilayers which are prepared by magnetron sputter deposition. Starting from the two‐component Mo/Si system, that has mainly been optimized with respect to interface roughness, we show that interface interdiffusion can also be reduced by the introduction of tiny barrier layers. In pure Mo/Si multilayers particularly a low Ar sputter gas pressure is important to get smooth layers, whereas the interdiffusion can be reduced by the deposition of C and B4C barrier layers on the individual interfaces. As result of our work, we have prepared Mo/Si multilayers with outstanding high reflectances: REUV = 70.1 % (λ = 13.3 nm, α = 1.5°), REUV = 71.4 % (λ = 12.5 nm, α = 22.5°).  相似文献   

3.
Amorphous Ni50Nb50/C multilayers with a period of 2.4 nm for the water window soft X-rays were prepared by pulsed laser ablation deposition. The structural stability of these multilayers was studied by grazing incidence X-ray scattering. The multilayers were found to be highly stable at room temperature for periods as long as 3 years. However, the Ni50Nb50 layer was found to undergo an amorphous – crystalline disorder – order transformation due to annealing while the carbon layer remained unchanged. The crystalline phase after transformation could be identified as the NiNb phase. The vertical layered structure, however, was found to be highly stable even after annealing the multilayers at 473 and 593 K under vacuum. The multilayer period remains unchanged till 473 K and increases by 7% on annealing at 593 K.  相似文献   

4.
Using variable-angle spectroscopic ellipsometry, we measure the pseudo-dielectric functions of as-deposited and annealed SiO2/SiOx multilayers. The SiO2(2 nm)/SiOx(2 nm) multilayers are prepared under various deposition temperatures by ion beam sputtering. Annealing at temperatures above 1100 °C leads to the formation of Si nanocrystals (nc-Si) in the SiOx layer of multilayers. Transmission electron microscopy images clearly demonstrate the existence of nc-Si. We assume a Tauc-Lorentz lineshape for the dielectric function of nc-Si, and use an effective medium approximation for SiO2/nc-Si multilayers as a mixture of nc-Si and SiO2. We successfully estimate the dielectric function of nc-Si and its volume fraction. We find that the volume fraction of nc-Si decreases after annealing, with increasing x in as-deposited SiOx layer. This result is compared to expected nc-Si volume fraction, which is estimated from the stoichiometry of SiOx.  相似文献   

5.
Amorphous Ni–Nb/C multilayers with a period of 2.4 nm were prepared by pulsed laser ablation deposition. The as-deposited multilayers were found to have an interdiffused Ni1/3Nb1/3C1/3 layer present at the two interfaces; Ni1/2Nb1/2/C and C/N1/2Nb1/2. The specular reflectivity and diffuse scattering studies show that the interface roughness is chemical and not morphological in origin. The structural studies performed using X-ray scattering techniques after a period of 2.5 years from deposition show that the behaviour does not change with time. These results indicate that the multilayered structure is temporally stable in spite of the strong composition dependent driving force for chemical homogenization. The structural stability against homogenization is due to the presence of an amorphous Ni1/3Nb1/3C1/3 layer present at the interfaces which acts as a diffusion barrier.  相似文献   

6.
This review of high-T c superconducting thin-film processing focuses on the developments in thin-film deposition technologies since 1987. The common deposition processes are described with reference to their effects on superconductor film performance. A comparative evaluation of the potential of the technologies is also given. The development of multilayers and heterostructures is an important requirement for future device applications and is also described. The latest results of the deposition of novel superconducting materials and deposition on uncommon substrates are discussed. The outlook on some imminent topics of future development in process technologies for high-T c superconducting thin films is discussed.  相似文献   

7.
This review of high-T c superconducting thin-film processing focuses on the developments in thin-film deposition technologies since 1987. The common deposition processes are described with reference to their effects on superconductor film performance. A comparative evaluation of the potential of the technologies is also given. The development of multilayers and heterostructures is an important requirement for future device applications and is also described. The latest results of the deposition of novel superconducting materials and deposition on uncommon substrates are discussed. The outlook on some imminent topics of future development in process technologies for high-T c superconducting thin films is discussed.  相似文献   

8.
Mo/Si multilayers for applications in extreme ultraviolet (EUV) lithography have been prepared on Si wafer substrates using ion beam deposition. The multilayers were characterised by transmission electron microscopy, secondary ion mass spectroscopy, atomic force microscopy, photoelectron spectroscopy, X-ray reflectometry at grazing incidence, and EUV-reflectivity measurements at nearly normal incidence. The surface and the interfaces of the multilayers are rather smooth with only small roughness. The material properties of the layers are characterised by some intermixing and silicide formation at the Mo-Si interfaces and a polycrystalline grain structure of the Mo layers, which is in agreement with prior studies. Appearance of multilayer diffraction spots, well-resolved Kiessig fringes and other diffraction evidence indicate very good coherence of the wave fields and in this manner a good reproducibility of the multilayer period of 6.7 nm. Normal incidence peak reflectivities of 64-65% in the EUV spectral range were routinely obtained at 13.4 nm wavelength. This reflectivity value and the formation of an EUV standing wave field are confirmed using photoelectron spectroscopy, and an application for defect particle analysis is proposed. The obtained results are discussed in comparison to literature data of multilayers prepared by other deposition techniques and considering new attempts of interface engineering.  相似文献   

9.
使用离子束辅助沉积(IBAD)的方法,在医用不锈钢317L的基底上制备TiN/Ag多层膜.在TiN/Ag多层膜具有良好的抗茵性和抗腐蚀性的研究基础上,通过细胞毒性试验和溶血试验评价了TiN/Ag多层膜的生物相容性.试验结果表明:TiN/Ag多层膜样品的细胞毒性等级在0~1之间;溶血率〈5%,符合生物医学材料的标准.这些说明TIN/Ag多层膜不仅具有抗菌性和抗腐蚀性,而且具有良好的生物相容性.  相似文献   

10.
The present paper describes a Pt/LNO/PZT/LNO/Pt/Ti/SiO2 multilayers deposited on 4-inch Si wafers. We have evaluated the variation of the deflection of the Si wafers with deposition of each of the thin films. The deposition of the multilayers has resulted in downward deflection (center is higher than edge) of the Si wafers. The multilayers have been also deposited onto SOI wafers and fabricated into piezoelectric micro cantilevers through MEMS bulk micromachining. The micro cantilevers have shown the upward deflection. We have characterized the ferroelectric and piezoelectric properties of the PZT thin films through electrical tests of the micro cantilevers. The dielectric constant, saturation polarization, remanent polarization and coercive field were measured to be 1050, 31.3 μC/cm2, 9.1 μC/cm2 and 21 kV/cm, respectively. The transverse piezoelectric constant, d31, was measured to be − 110 pm/V from the DC response of the micro cantilevers.  相似文献   

11.
Z.L. Wu 《Thin solid films》2009,517(24):6553-6557
Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe2Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe2Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.  相似文献   

12.
An investigation has been carried out to determine the conditions required for the fabrication of stable SiO2-Pt multilayers using DC-magnetron sputtering for the Pt and RF-magnetron sputtering for the SiO2. As a preliminary investigation, single layers of Pt on SiO2 were analysed by X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) to develop a model of the Pt-SiO2 interface layer. The results indicated that a distinct interface layer develops as a Pt silicate approximately 6 Å thick. SiO2-Pt multilayers fabricated with a period d>65 Å using pure argon as the sputtering gas, display X-ray reflectivity patterns which can be accurately characterised by a repeating bilayer model. When d<65 Å the multilayer becomes unstable upon exposure to air. Additional peaks develop in the XRR pattern which increase in magnitude with time. These peaks arise from the expansion of the SiO2 layers in the multilayer starting from the top bilayer and gradually working through the multilayer. In the as-prepared specimens the SiO2 layers are incompletely oxidised and have a composition SiOx (x<2) and, on exposure to air, oxygen diffuses through the multilayer surface converting the SiOx to SiO2. By introducing a small partial pressure of oxygen into the sputtering gas during deposition, multilayers with d<65 Å remained stable on exposure to air. Under these conditions the density of the platinum layers determined from XRR measurements was reduced by approximately 25%. XPS showed that the platinum layer contained bonded oxygen in the form of platinum oxide PtOx (x<1). SiO2/PtOx multilayers have been fabricated with periods down to 13 Å, but the intensity of the first order peak drops off dramatically once the thickness of the PtOx layer is less that 10-12 Å.  相似文献   

13.
Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3–4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron–boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4)2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.  相似文献   

14.
In this contribution the application of a modern technique-scanning electrochemical microelectrode – for the evaluation of thin films which were deposited (IBAD) is illustrated. New tendencies in the development of thin films with anticorrosive purpose lead to the development of multi-layer systems acting similar to those commonly, applied in the industry, however, being much thinner. Imperfections and defects are commonly introduced in the coating during the deposition process, and these affect the anticorrosive properties of the film. In order to make a local electrochemical study of these multi-layer systems we have developed equipment in order to perform electrochemical surface-scans (potential and current density) on the basis of a microelectrode with a good lateral resolution (approximately 20 μm). Al-Al2O3 multilayers on steel substrates with differently designed interfaces were investigated to show the variation of uniform and local electrochemical information obtained in dependence on the coating deposition parameters.  相似文献   

15.
Electrochemical methods are attractive for thin film deposition due to their simplicity, conformal and high rate deposition, the ability to easily make multilayers of different composition, ease of scale-up to large surface areas, and applicability to wide variety of different shapes and surface geometries. However, many elements from periodic table of commercial importance are too active to be electrodeposited from aqueous solution. Recent advances are briefly reviewed for room temperature methods for electrochemical deposition, including electrodeposition from ionic liquids, electrodeposition from organic solvents, combined electrodeposition and precipitation on liquid metal cathodes, and galvanic deposition. Recent studies of electrodeposition from ionic liquids include deposition of thick (40 μm) Al coatings on high-strength steel screws in a manufacturing environment; deposition of continuous Si, Ta and Nb coatings; and numerous interesting mechanistic studies. Recent studies of electrodeposition from organic solvents include Al coatings from the AlCl3–dimethylsulfone electrolyte, which demonstrate that additives can be employed to suppress impurity incorporation and to improve the deposit quality, and thick (5–7 μm) and continuous Si coatings from SiCl4 in acetonitrile. Galvanic deposition of Ti, Mo and Si coatings onto Al alloys has recently been reported, which is potentially much simpler and less expensive than electrodeposition from ionic liquids and organic solvents, but has complications associated with substrate consumption and coating adhesion.  相似文献   

16.
In this work we present a structural, optical and electrical characterization of SixC1?x/SiC multilayer systems with different silicon content. After the deposition process, an annealing treatment was carried out in order to induce the silicon nanocrystals formation. By means of energy-filtered transmission electron microscopy (EFTEM) we observed the structural morphology of the multilayers and the presence of crystallized silicon nanoprecipitates for samples annealed up to 1100 °C. We discuss the suitability of optical techniques such as Raman scattering and reflectance and transmittance (R&T) for the evaluation of the crystalline fraction of our samples at different silicon excess ranges. In addition, the combination of R&T measurements with simulation has proved to be a useful instrument to confirm the structural properties observed by EFTEM. Finally, we explore the origin of the extremely high current density revealed by electrical measurements, probably due to the presence of an undesired defective SiCyOz ternary compound layer, already supported by the structural and optical results. Nevertheless, the variation of the electrical measurements with the silicon amount indicates a small but significant contribution from the multilayers.  相似文献   

17.
An exact matrix method, originally proposed for evaluating effective elastic constants of generally anisotropic multilayer composites, is further developed for a micromechanical analysis of multilayers with various coupled physical effects including piezoelectricity, piezomagnetism, thermoelasticity (in consideration of entropy), and the Biot’s poroelasticity. The results for a BaTiO3-CoFe2O4 magneto-electro-thermo-elastic (METE) multilayer coincide with those calculated using other micromechanical models based on the Mori-Tanaka method and the asymptotic homogenization method. It is shown that the present method can efficiently handle the most general type of multilayers with an arbitrary number of general anisotropic layers. Analytical expressions for effective material properties of a transversely isotropic METE multilayer composite are derived, from which those for functionally graded METE multilayers can be directly obtained. The effects of crystallographic orientations and volume fractions of constituting layers on the magnetoelectric coefficients are investigated for BaTiO3-CoFe2O4 and LiNbO3-CoFe2O4 multilayer composites. It is thus demonstrated that the present model can be used for the layout/material optimization of these METE multilayers to obtain a maximum product property such as the magnetoelectric, pyroelectric, and pyromagnetic coefficients. It is also shown that the same method can be used to predict the effective properties of poroelastic multilayers.  相似文献   

18.
DC reactive sputtering was used to deposit titanium and tungsten-based metal/oxide periodic nanometric multilayers using pure metallic targets and Ar + O2 gas mixture as reactive atmosphere. The innovative technique namely, the reactive gas pulsing process allows switching between the metal and oxide to prepare a periodic multilayered structure with various metalloid concentrations and nanometric dimensions. The same pulsing period was used for each deposition to produce metal-oxide periodic alternations close to 10 nm. Structure, crystallinity and chemical composition of these films were systematically investigated by Raman spectroscopy, X-ray diffraction and Energy-dispersiveX-ray spectroscopy techniques. The high resolution transmission electron microscopy allowed observing the sharpness of the metal/oxide interfaces and measuring the thickness of each kind of layers. Moreover, the crystalline structure of metal and metal oxide layers was also studied. The difference of reactivity between the two systems leads to periodic β-W3O/a-WO3 and face-centered-cubic-TiO/a-TiO2 multilayers.  相似文献   

19.
S.P. Liu  D.J. Li 《Materials Letters》2008,62(20):3536-3538
TiB2/TiAlN multilayered coatings with various modulation ratios (tTiB2:tTiAlN) were grown using radio-frequency magnetron sputtering at room temperature. Nanoindentation, tester for material surface properties, and XRD were used to investigate the influence of modulation ratio on microstructure and properties of the multilayers. All multilayers showed improved mechanical properties, compared with the average value of the monolithic TiB2 and TiAlN coatings. The multilayer with modulation ratio of 5:2 displayed the highest hardness (36 GPa) and longest time to crack during wear. A marked layer structure with the strong mixture of TiAlN (111), AlN (111), and TiB2 (001) textures with smaller grain sizes was responsible for the enhanced hardness.  相似文献   

20.
Thin films of nominal composition Ni-25at%Al have been sputter deposited from a target of the intermetallic compound Ni3Al at different substrate deposition temperatures. The film deposited on an unheated substrate exhibited a strongly textured columnar growth morphology and consisted of a mixture of metastable phases. Nanoindentation studies carried out on this film exhibited a strong strain hardening tendency. In contrast, the film deposited at 200 °C exhibited a recrystallized non-textured microstructure consisting of grains of a partially ordered Ni3Al phase. At higher deposition temperatures (∼400 °C), larger grains of the bulk equilibrium, long-range ordered, Ll2 Ni3Al phase were observed in the film. Unlike the film deposited on an unheated substrate, the films deposited at elevated temperatures did not exhibit any dependence of the hardness on the indentation depth and, consequently no strain hardening. The average hardness of the film deposited at 200 °C was higher than the one deposited at 400 °C. In addition to monolithic Ni-25Al thin films, multilayered Ni/Ni3Al thin films were also deposited. Multilayers deposited non-epitaxially on unheated substrates exhibited a strong {111} fiber texture while those deposited epitaxially on (001) NaCl exhibited a {001} texture. Free-standing multilayers of both types of preferred orientations as well as of different layer thicknesses were deformed in tension untill fracture. Interestingly, the {111} oriented multilayers failed primarily by a brittle fracture while the {001} multilayers exhibited features of ductile fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号