首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 812 毫秒
1.
Rogowski线圈具有结构简单,线性度良好、安装方便等优点.主要用在测量交流电流、脉冲电流、电力系统中的暂态电流等方面.本文简单分析了Rogowski的测量原理,并用集中参数模型,给出了自积分式Rosowski线圈参数的计算公式以及线圈的传递函数.通过仿真研究了自积分式Rogowski线圈的电磁参数对线圈频率特性的影响,以及自感、互感、分布电容和取样电阻变化时对自积分式Rogowski线圈频带宽度的影响,并为优化Rogowski线圈的设计提供了参考指数.  相似文献   

2.
介绍了PCB型Rogowski线圈的工作原理及特点,详细分析并设计了该传感器的信号处理电路,对该线圈电流传感器进行了线性度和灵敏度测试,实验结果表明:该传感器测量时线性度好,准确度较高,能满足测量要求。  相似文献   

3.
Rogowski线圈的设计原理及其预处理电路的分析   总被引:1,自引:0,他引:1  
测量传感头Rogowski线圈是光电电流互感器的关键部分.通过分析Rogowski线圈的测量原理及Rogowski线圈的等效电路,导出了测量关系.对Rogowski线圈的采样信号进行预处理,分析了处理电路的频率特性.Rogowski线圈及其处理电路的实验数据表明,被测电流与输出电压之间呈良好的线性关系,Rogowski线圈具有非常充裕的带宽.  相似文献   

4.
电子式电流互感器中Rogowski线圈的设计及动静态性能分析   总被引:1,自引:0,他引:1  
测量传感头Rogowski线圈是电子式电流互感器的关键部分,通过分析Rogowski线圈的测量原理,导出了测量关系,并设计了一个Rogowski线圈.实验结果表明该Rogowski线圈具有良好的线性度.根据仿真分析可知该传感头不但在测量稳态电流上有很高的精度,还能很好地反映故障电流的暂态过程,并在动态试验中得到了验证.从而为设计一个高测量精度和良好动态性能的电子式电流互感器奠定了基础.  相似文献   

5.
郑慧  杨宇芳  潘骏 《仪表技术》2012,(11):34-36
Rogowski线圈作为传感头是光纤电流互感器的关键部分,文章分析了Rogowski线圈的测量原理和等效电路,得出了测量关系,并根据分析设计了一个Rogowski线圈。实验表明该Rogowski线圈具有良好的线性度;频率特性分析显示该Rogowski线圈有非常充裕的带宽,进而为设计高精度的光纤电流互感器奠定了基础。  相似文献   

6.
在电力系统中,电子式电流互感器被广泛应用于电流测量.本系统采用新型高精度Rogowski线圈作感应元件,设计一种新型模拟信号处理系统对线圈输出电压信号进行处理,完成电流的测量和过载保护功能.从而简化设计过程、降低生产成本.从试验结果看传感头精度可达到0.2级要求.  相似文献   

7.
本文从物理定律出发,阐述了带磁芯脉冲大电流测量线圈的基本原理和设计方法,此测量法与传统的分流器法和空芯测量线圈(即Rogowski线圈)相比较,可以测量小脉冲电流,改善低频响应和简化工艺。本文介绍了设计的实验中使用的测量线圈及其特性。  相似文献   

8.
本文研究了Rogowski线圈的测量原理、等效电路,以及自积分和外积分两种测量电流的方法,并分析了其适用场所。研究了截面形状(圆形截面和矩形截面)、截面直径、匝数等结构参数对其动态性能的影响,通过建立传递函数,利用Matlab仿真软件进行仿真,分析阶跃响应、幅频特性曲线并得出结论。针对不同的分布电容、取样电阻、线圈内阻等电磁参数建立传递函数,利用Matlab软件进行仿真分析得出结论。通过分析比较提出了优选罗氏线圈结构和电磁参数的方法,对于设计动态特性良好的罗氏线圈具有理论指导作用。  相似文献   

9.
通过对国家标准中标准雷击电流波形特性进行准确检测的要求,设计了方形和圆形2种结构参数不同的罗氏线圈。在深入分析和计算线圈测量原理的基础上,结合测量的动态特性进行了仿真和实验研究,可知方形和圆形骨架的罗氏线圈测得的电流频率范围分别为50Hz~394MHz和743Hz~394MHz,线圈骨架方形和圆形所测得的灵敏度分别为117mV/kA和111.3mV/kA,根据实际测试结果显示,所设计的2种线圈可测量各类快速变化的大幅值雷击电流,并具有较好的灵敏度和线性度。同时,对这2种结构形式不同的线圈设计的参数进行对比分析得知,方形骨架线圈比圆形骨架的测量误差小,方形骨架所测得的电流频率更宽。  相似文献   

10.
工业生产中存在着大量10(6)k V电气设备,由于测试环境及测试对象的特殊性,传统的铁磁式电流传感器难以满足要求。在分析Rogowski空心线圈结构、原理及参数计算方法的基础上,设计了基于罗氏线圈的高压测试装置电流传感器。为了降低低频信号的干扰和消除工频附近的相位误差,对传统积分电路进行了改进并重新设计了相位补偿电路。通过现场测试发现,使用该电流传感器的测试装置能够满足测量精度要求。  相似文献   

11.
文中介绍了一种自制的自积分式Rogowski线圈配合示波器所组成的冲击电流测量系统的基本原理,采用标准电阻对该Rogowski线圈的测量结果进行了实验校准,并对校准实验数据进行处理.从处理结果看,该Rogowski线圈具有较好的冲击电流测量精度.  相似文献   

12.
Four sets of magnetic diagnostic coils, which are printed on machinable ceramic printed circuit boards (PCB), are designed, fabricated, installed, and tested in the Joint Texas Experimental Tokamak (J-TEXT) vacuum vessel for detecting the plasma radial and vertical displacements relative to the geometric center of the vacuum vessel in Ohmic discharges. Each coordinate is determined by a pair of variable cross-section Rogowski and saddle coils, which measure the tangential and normal magnetic fields (relative to the coil surface). These coils are suitable for mass production and offer advantages in vacuum compatibility and temperature tolerance that are important for J-TEXT. Position measurements using PCB coils are compared with those from soft x-ray image system and match the position well.  相似文献   

13.
This paper presents design, calibration and testing of a new tape-wound Rogowski coil for measuring large-magnitude pulsed currents. The performance of the coil is tested by different impulse current waveforms up to 9 kA peak value. The coil is calibrated versus two commercial impulse-current transformers with different impulse current waveforms. The coil design is optimized to work in the differentiating mode and achieve useful bandwidth and sensitivity up to 1 MHz and 102 mV/kA, respectively. Waveform distortion of the coil output voltage is examined by using the lumped-element model to optimize the parameters of the external passive integrator. It is desired to optimize the integrator parameters and achieve the desired bandwidth without having droop and backswing. To do so, the coil frequency response is investigated by making fast Fourier transform (FFT) of the impulse current waveforms and PSPICE simulation of the lumped parameter equivalent circuit of Rogowski coil and the external integrator. Finally, it is found that the PSPICE calculated sensitivity for the optimized integrator parameters deviates from the corresponding measured one by a percentage relative error of–0.05%.  相似文献   

14.
A new method was designed for calibrating a Rogowski coil of fast time response. The method is based on the cable pulser method except that the voltage signal pick-off output was moved to a position with a distance l from the load. If 2l/v is longer than the time duration of the forward voltage pulse u(f)(t), the reflected voltage pulse u(r)(t) could be separated from u(f)(t) and directly measured. Using the formula i(t)=[u(f)(t)-u(r)(t)]/50 to calculate the primary current of the Rogowski coil, the coil could be more accurately calibrated.  相似文献   

15.
对脉冲电流的测量方法以罗科夫斯基线圈的设计过程进行了阐述,对罗科夫斯基线圈设计过程中的骨架材料以及绕线材料选择的问题,分别进行介绍,同时分析了提高罗科夫斯基线圈互感系数的方法,并通过具体的实验对脉冲电流进行了测量。  相似文献   

16.
Rogowski coils: theory and experimental results   总被引:1,自引:0,他引:1  
The theory is given of the voltage output of a Rogowski coil excited by a current pulse flowing along the axis of the coil. In this theory the Rogowski coil is considered as a delay line. The results do not differ from those obtained usually by considering the coil as a voltage source dphi/dt with an inductive output impedance. Details are also given of the design of two Rogowski coils and their working modes are fully analyzed.  相似文献   

17.
A self-integrating Rogowski coil with magnetic core is investigated for accurate measurement of high-impulse current in this paper. Usually, the distributed parameters of Rogowski coil generate deleterious high-frequency resonant signal parasitizing in the useful signal of the coil circuit. Damping resistors can be used to eliminate the parasitic resonant component of the signal. In this paper, damping effects of the damping resistors on the output signal of Rogowski coil are studied in detail. According to circuit theory, approximate circuit equations of Rogowski coil with lumped parameters in simplification are put forward. Response signal of coil is analyzed and a reasonable method for choosing damping resistance is also presented. When the 50 Ω damping resistance is used, the amplitude of parasitic resonant signal has been damped by 5.7 times in contrast to the situation without any damping resistance. Result of Pspice circuit simulation corresponds to the theoretical calculation result. A standard 10 ns square pulse has been used to calibrate the coil signal before and after the damping resistors soldering on the coil, respectively. Experimental results show that the response time of the coil with magnetic core is 1.1 ns and the parasitic resonance in the coil signal is almost eliminated. The coil can accurately detect high-pulse current at kA range.  相似文献   

18.
Partial discharges (PD) in a power system component is a sever threat, indicating a high likelihood of the imminent and complete failure of the insulation. The reliability of partial discharge diagnostics depends upon the design and accuracy of the measuring sensors. In this paper the Rogowski coil is employed as a PD measuring sensor. The selection of suitable geometrical parameters has been identified as an important aspect regarding the proper operation and installation of the coil around the under test power component. These parameters significantly affect the measuring performance of the coil in terms of its sensitivity and bandwidth. The measurement performance of different geometrical designs for the high frequency Rogowski coils is evaluated. The variation in parameters such as core and coil diameter, diameter of the copper wire used for winding and number of turns, has been experimentally investigated. In addition the return winding, as a non-conventional method of creating a return loop for the Rogowski coil, is compared with a return wire (loop) to analyze sensor performance. The comparative study of variation in mechanical design features provides a brief guideline to select the optimal design of the coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号