首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
It is shown that the order-k Voronoi diagram of n sites with additive weights in the plane has at most (4k–2)(nk) vertices, (6k–3)(n–k) edges, and (2k–1)(n–itk) + 1 regions. These bounds are approximately the same as the ones known for unweighted order-k Voronoi diagrams. Furthermore, tight upper bounds on the number of edges and vertices are given for the case that every weighted site has a nonempty region in the order-1 diagram. The proof is based on a new algorithm for the construction of these diagrams which generalizes a plane-sweep algorithm for order-1 diagrams developed by Steven Fortune. The new algorithm has time-complexityO(k 2 n logn) and space-complexityO(kn). It is the only nontrivial algorithm known for constructing order-kc Voronoi diagrams of sites withadditive weights. It is fairly simple and of practical interest also in the special case of unweighted sites.Work on this paper has been supported by Amoco Fnd. Fac. Dev. Comput. Sci. 1-6-44862.  相似文献   

2.
Boris Aronov 《Algorithmica》1989,4(1-4):109-140
Given a simple polygon withn sides in the plane and a set ofk point “sites” in its interior or on the boundary, compute the Voronoi diagram of the set of sites using the internal “geodesic” distance inside the polygon as the metric. We describe anO((n + k) log(n + k) logn)-time algorithm for solving this problem and sketch a fasterO((n + k) log(n + k)) algorithm for the case when the set of sites includes all reflex vertices of the polygon in question.  相似文献   

3.
杨承磊  汪嘉业  孟祥旭 《软件学报》2006,17(7):1527-1534
多边形的Voronoi图在路径规划、碰撞检测等方面有着广泛的应用,其顶点和边数在这些应用算法的复杂度分析方面起着重要作用.Held证明了一个简单多边形的内部Voronoi图最多有n+k-2个顶点和2(n+k)-3条边,其中nk分别是多边形的顶点和内尖点数.但其结论不能适用于多连通多边形.对多连通多边形进行研究,通过将其Voronoi图转化为有根树,并利用有根树的性质,给出了其内部Voronoi图的顶点和边数上界的估计,并对Voronoi区域的边界所包含顶点和边数的平均值进行了讨论."SDU数字博物馆"系统所采用的基于Voronoi图的可见性算法的复杂度分析,就利用了所得出的结论.  相似文献   

4.
We study the complexity of higher-order Voronoi diagrams on triangulated surfaces under the geodesic distance, when the sites may be polygonal domains of constant complexity. More precisely, we show that on a surface defined by n triangles the sum of the combinatorial complexities of the order-j Voronoi diagrams of m sites, for j=1,…,k, is O(k2n2+k2m+knm), which is asymptotically tight in the worst case.  相似文献   

5.
It is well known that, using standard models of computation, Ω(n logn) time is required to build a Voronoi diagram forn point sites. This follows from the fact that a Voronoi diagram algorithm can be used to sort. However, if the sites are sorted before we start, can the Voronoi diagram be built any faster? We show that for certain interesting, although nonstandard, types of Voronoi diagrams, sorting helps. These nonstandard types of Voronoi diagrams use a convex distance function instead of the standard Euclidean distance. A convex distance function exists for any convex shape, but the distance functions based on polygons (especially triangles) lead to particularly efficient Voronoi diagram algorithms. Specifically, a Voronoi diagram using a convex distance function based on a triangle can be built inO (n log logn) time after initially sorting then sites twice. Convex distance functions based on other polygons require more initial sorting.  相似文献   

6.
We present an algorithm for computingL 1 shortest paths among polygonal obstacles in the plane. Our algorithm employs the “continuous Dijkstra” technique of propagating a “wavefront” and runs in timeO(E logn) and spaceO(E), wheren is the number of vertices of the obstacles andE is the number of “events.” By using bounds on the density of certain sparse binary matrices, we show thatE =O(n logn), implying that our algorithm is nearly optimal. We conjecture thatE =O(n), which would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time and space. Our algorithm generalizes to the case of fixed orientation metrics, yielding anO(n??1/2 log2 n) time andO(n??1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles. The algorithm further generalizes to the case of many sources, allowing us to compute anL 1 Voronoi diagram for source points that lie among a collection of polygonal obstacles.  相似文献   

7.
We introduce order-k α-hulls and α-shapes – generalizations of α-hulls and α-shapes. Being also a generalization of k-hull (known in statistics as “k-depth contour”), order-k α-hull provides a link between shape reconstruction and statistical depth. As a generalization of α-hull, order-k α-hull gives a robust shape estimation by ignoring locally up to k outliers in a point set. Order-k α-shape produces an “inner” shape of the set, with the amount of “digging” into the points controlled by k. As a generalization of k-hull, order-k α-hull is capable of determining “deep” points amidst samples from a multimodal distribution: it correctly identifies points which lie outside clusters of samples.The order-k α-hulls and α-shapes are related to order-k Voronoi diagrams in the same way in which α-hulls and α-shapes are related to Voronoi diagrams. This implies that order-k α-hull and α-shape can be readily built from order-k Voronoi diagram, and that the number of different order-k α-shapes for all possible values of α is proportional to the complexity of order-k Voronoi diagram.  相似文献   

8.
A sweepline algorithm for Voronoi diagrams   总被引:4,自引:0,他引:4  
Steven Fortune 《Algorithmica》1987,2(1-4):153-174
We introduce a geometric transformation that allows Voronoi diagrams to be computed using a sweepline technique. The transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms haveO(n logn) worst-case running time and useO(n) space.  相似文献   

9.
The combinatorial complexities of (1) the Voronoi diagram of moving points in 2D and (2) the Voronoi diagram of lines in 3D, both under the Euclidean metric, continues to challenge geometers because of the open gap between the Ω(n2) lower bound and the O(n3+?) upper bound. Each of these two combinatorial problems has a closely related problem involving Minkowski sums: (1′) the complexity of a Minkowski sum of a planar disk with a set of lines in 3D and (2′) the complexity of a Minkowski sum of a sphere with a set of lines in 3D. These Minkowski sums can be considered “cross-sections” of the corresponding Voronoi diagrams. Of the four complexity problems mentioned, problems (1′) and (2′) have recently been shown to have a nearly tight bound: both complexities are O(n2+?) with lower bound Ω(n2).In this paper, we determine the combinatorial complexities of these four problems for some very simple input configurations. In particular, we study point configurations with just two degrees of freedom (DOFs), exploring both the Voronoi diagrams and the corresponding Minkowski sums. We consider the traditional versions of these problems to have 4 DOFs. We show that even for these simple configurations the combinatorial complexities have upper bounds of either O(n2) or O(n2+?) and lower bounds of Ω(n2).  相似文献   

10.
Restricted Voronoi diagrams are a fundamental geometric structure used in many applications such as surface reconstruction from point sets or optimal transport. Given a set of sites V = { v k}nk=1 ? ?d and a mesh X with vertices in ?d connected by triangles, the restricted Voronoi diagram partitions X by computing for each site the portion of X for which the site is the nearest. The restricted Voronoi diagram is the intersection between the regular Voronoi diagram and the mesh. Depending on the site distribution or the ambient space dimension computing the regular Voronoi diagram may not be feasible using classical algorithms. In this paper, we extend Lévy and Bonneel's approach [ LB12 ] based on nearest neighbor queries. We show that their method is limited when the sites are not located on X . We propose a new algorithm for computing restricted Voronoi which reduces the number of sites considered for each triangle of the mesh and scales smoothly when the sites are far from the surface.  相似文献   

11.
TheDelaunay diagram on a set of points in the plane, calledsites, is the straight-line dual graph of the Voronoi diagram. When no degeneracies are present, the Delaunay diagram is a triangulation of the sites, called theDelaunay triangulation. When degeneracies are present, edges must be added to the Delaunay diagram to obtain a Delaunay triangulation. In this paper we describe an optimalO(n logn) plane-sweep algorithm for computing a Delaunay triangulation on a possibly degenerate set of sites in the plane under theL 1 metric or theL metric.  相似文献   

12.
In this paper, we introduce the fuzzy Voronoi diagram as an extension of the Voronoi diagram. We assume Voronoi sites to be fuzzy points and then define the Voronoi diagram for this kind of sites, then we provide an algorithm for computing this diagram based on Fortune's algorithm which costs O(nlogn) time. Also we introduce the fuzzy Voronoi diagram for a set of fuzzy circles, rather than fuzzy points, of the same radius. We prove that the boundary of this diagram is formed by the intersection of some hyperbolae, and finally we provide an O(n3logn)-time algorithm to compute the boundary.  相似文献   

13.
We consider the problem of maintaining on-line the triconnected components of a graphG. Letn be the current number of vertices ofG. We present anO(n)-space data structure that supports insertions of vertices and edges, and queries of the type “Are there three vertex-disjoint paths between verticesv 1 andv 2?” A sequence ofk operations takes timeO(k·α(k, n)) ifG is biconnected(α(k, n) denotes the well-known Ackermann's function inverse), and timeO(n logn+k) ifG is not biconnected. Note that the bounds do not depend on the number of edges ofG. We use theSPQR-tree, a versatile data structure that represents the decomposition of a biconnected graph with respect to its triconnected components, and theBC-tree, which represents the decomposition of a connected graph with respect to its biconnected components.  相似文献   

14.
An obnoxious facility is to be located inside a polygonal region of the plane, maximizing the sum of the k smallest weighted Euclidean distances to n given points, each protected by some polygonal forbidden region. For the unweighted case and k fixed an O(n2logn) time algorithm is presented. For the weighted case a thorough study of the relevant structure of the multiplicatively weighted order-k-Voronoi diagram leads to the design of an O(kn3+n3logn) time algorithm for finding an optimal solution to the anti-t-centrum problem for every t=1,…,k, simultaneously.  相似文献   

15.
Let X = {f1, …, fn} be a set of scalar functions of the form fi : ?2 → ? which satisfy some natural properties. We describe a subdivision algorithm for computing a clustered ε‐isotopic approximation of the minimization diagram of X. By exploiting soft predicates and clustering of Voronoi vertices, our algorithm is the first that can handle arbitrary degeneracies in X, and allow scalar functions which are piecewise smooth, and not necessarily semi‐algebraic. We apply these ideas to the computation of anisotropic Voronoi diagram of polygonal sets; this is a natural generalization of anisotropic Voronoi diagrams of point sites, which extends multiplicatively weighted Voronoi diagrams. We implement a prototype of our anisotropic algorithm and provide experimental results.  相似文献   

16.
Randomized incremental construction of Delaunay and Voronoi diagrams   总被引:1,自引:0,他引:1  
In this paper we give a new randomized incremental algorithm for the construction of planar Voronoi diagrams and Delaunay triangulations. The new algorithm is more “on-line” than earlier similar methods, takes expected timeO(n?gn) and spaceO(n), and is eminently practical to implement. The analysis of the algorithm is also interesting in its own right and can serve as a model for many similar questions in both two and three dimensions. Finally we demonstrate how this approach for constructing Voronoi diagrams obviates the need for building a separate point-location structure for nearest-neighbor queries.  相似文献   

17.
A sweepline algorithm for Voronoi diagrams   总被引:26,自引:2,他引:24  
We introduce a geometric transformation that allows Voronoi diagrams to be computed using a sweepline technique. The transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms haveO(n logn) worst-case running time and useO(n) space.  相似文献   

18.
Boris Aronov 《Algorithmica》1989,4(1):109-140
Given a simple polygon withn sides in the plane and a set ofk point sites in its interior or on the boundary, compute the Voronoi diagram of the set of sites using the internal geodesic distance inside the polygon as the metric. We describe anO((n + k) log(n + k) logn)-time algorithm for solving this problem and sketch a fasterO((n + k) log(n + k)) algorithm for the case when the set of sites includes all reflex vertices of the polygon in question.Work on this paper was performed while the author held an AT&T Bell Laboratories Ph.D. Scholarship at New York University.  相似文献   

19.
Given a graph G=(V,E) with n vertices and m edges, and a subset T of k vertices called terminals, the Edge (respectively, Vertex) Multiterminal Cut problem is to find a set of at most l edges (non-terminal vertices), whose removal from G separates each terminal from all the others. These two problems are NP-hard for k≥3 but well-known to be polynomial-time solvable for k=2 by the flow technique. In this paper, based on a notion farthest minimum isolating cut, we design several simple and improved algorithms for Multiterminal Cut. We show that Edge Multiterminal Cut can be solved in O(2 l kT(n,m)) time and Vertex Multiterminal Cut can be solved in O(k l T(n,m)) time, where T(n,m)=O(min?(n 2/3,m 1/2)m) is the running time of finding a minimum (s,t) cut in an unweighted graph. Furthermore, the running time bounds of our algorithms can be further reduced for small values of k: Edge 3-Terminal Cut can be solved in O(1.415 l T(n,m)) time, and Vertex {3,4,5,6}-Terminal Cuts can be solved in O(2.059 l T(n,m)), O(2.772 l T(n,m)), O(3.349 l T(n,m)) and O(3.857 l T(n,m)) time respectively. Our results on Multiterminal Cut can also be used to obtain faster algorithms for Multicut: $O((\min(\sqrt{2k},l)+1)^{2k}2^{l}T(n,m))Given a graph G=(V,E) with n vertices and m edges, and a subset T of k vertices called terminals, the Edge (respectively, Vertex) Multiterminal Cut problem is to find a set of at most l edges (non-terminal vertices), whose removal from G separates each terminal from all the others. These two problems are NP-hard for k≥3 but well-known to be polynomial-time solvable for k=2 by the flow technique. In this paper, based on a notion farthest minimum isolating cut, we design several simple and improved algorithms for Multiterminal Cut. We show that Edge Multiterminal Cut can be solved in O(2 l kT(n,m)) time and Vertex Multiterminal Cut can be solved in O(k l T(n,m)) time, where T(n,m)=O(min (n 2/3,m 1/2)m) is the running time of finding a minimum (s,t) cut in an unweighted graph. Furthermore, the running time bounds of our algorithms can be further reduced for small values of k: Edge 3-Terminal Cut can be solved in O(1.415 l T(n,m)) time, and Vertex {3,4,5,6}-Terminal Cuts can be solved in O(2.059 l T(n,m)), O(2.772 l T(n,m)), O(3.349 l T(n,m)) and O(3.857 l T(n,m)) time respectively. Our results on Multiterminal Cut can also be used to obtain faster algorithms for Multicut: O((min(?{2k},l)+1)2k2lT(n,m))O((\min(\sqrt{2k},l)+1)^{2k}2^{l}T(n,m)) -time algorithm for Edge Multicut and O((2k) k+l/2 T(n,m))-time algorithm for Vertex Multicut.  相似文献   

20.
An edge-skeleton in an arrangementA(H) of a finite set of planes inE 3 is a connected collection of edges inA(H). We give a method that constructs a skeleton inO(√n logn) time per edge. This method implies new and more efficient algorithms for a number of structures in computational geometry including order-k power diagrams inE 2 and space cutting trees inE 3. We also give a novel method for handling special cases which has the potential to substantially decrease the amount of effort needed to implement geometric algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号