首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the dentinal tubule penetration of mineral trioxide aggregate (MTA), NeoMTA Plus and Biodentine placed by either manual condensation or ultrasonic activation in simulated open apex model. Standardized divergent open apex models were created using palatal roots of 60 human maxillary molars and divided into six groups according to the used cements and activation methods (n = 10): MTA‐manual condensation, MTA‐ultrasonic activation, NeoMTA Plus‐manual condensation, NeoMTA Plus‐ultrasonic activation, Biodentine‐manual condensation, Biodentine‐ultrasonic activation. For the measurement of penetration, the cements were mixed with 0.1% Rhodamin B and 6‐mm apical portions of each root canal were obturated in an orthograde direction. The roots were embedded into acrylic blocks, and 1‐mm‐thick sections were obtained at 3 mm from the apex. Specimens were mounted onto glass slides and scanned under a confocal laser scanning microscope (CLSM) and stereomicroscope. Dentinal tubule penetration areas, depth and percentage were measured using LSM and ImageJ software. The data were analyzed using two‐way analysis of variance (anova ) with Bonferroni correction (α = 0.05). No correlation was found between stereomicroscope and CLSM analyses (p > .05). CLSM analysis showed no significant differences between MTA, NeoMTA Plus, and Biodentine groups when manual condensation was used (p > .05). Ultrasonic activation did not increase the tubular penetration of MTA, NeoMTA Plus or Biodentine as compared to manual condensation of each material (p > .05). MTA, NeoMTA Plus and Biodentine showed similar tubular penetration when manual condensation was used. Ultrasonic activation of these cements had no effect on tubular penetration of each material as compared to the manual condensation counterparts.  相似文献   

2.
The purpose of this study was to compare total‐etch, self‐etch, and selective etching techniques on the marginal microleakage of Class V composite restorations prepared by Er:YAG laser and bur. Class V cavities prepared on both buccal and lingual surfaces of 30 premolars by Er:YAG laser or bur and divided into six groups. The occlusal margins were in enamel, and the cervical margins were in cementum. Group‐1: bur preparation(bp)+Adper Single Bond 2 (ASB)+Filtek Z550 (FZ); Group‐2: laser preparation(lp)+(ASB)+(FZ); Group‐3: bp + Clearfil S3 Bond Plus (CSBP)+(FZ); Group‐4: lp+(CSBP) (FZ); Group‐5: bp + acid etching+(CSBP)+(FZ); Group‐6: lp + acid etching+(CSBP)+(FZ). All teeth were stored in distilled water at 37°C for 24 hr, and then thermocycled 1000 times (5–55°C). Five teeth from each group were chosen for the microleakage investigation, and two teeth for the scanning electron microscope evaluation. Teeth which were prepared for the microleakage test were immersed in .5% methylene blue dye for 24 hr. After immersion, the teeth were sectioned and observed under a stereomicroscope for dye penetration. Data were analyzed using Kruskal–Wallis and Mann–Whitney U tests (p < .05). More microleakage was observed in the cervical regions compared to the occlusal regions in Groups 3, 5, and 6, respectively (p < .05). There is no statistically significant difference in Groups 1, 2, and 4, in terms of cervical regions versus occlusal regions (p > .05). No significant differences were observed among any groups in terms of occlusal and cervical surfaces, separately (p > .05). Different etching techniques did not influence microleakage of Class V restorations prepared by Er:YAG laser and bur.  相似文献   

3.
The aim of this study was to evaluate the effects of different power parameters of an Erbium, Cromium: Yttrium, Scandium, Gallium, Garnet laser (Er,Cr:YSGG laser) on the morphology, attachment of blood components (ABC), roughness, and wear on irradiated root surfaces. Sixty‐five incisive bovine teeth were used in this study, 35 of which were used for the analysis of root surface morphology and ABC. The remaining 30 teeth were used for roughness and root wear analysis. The samples were randomly allocated into seven groups: G1: Er,Cr:YSGG laser, 0.5 W; G2: Er,Cr:YSGG laser, 1.0 W; G3: Er,Cr:YSGG laser, 1.5 W; G4: Er,Cr:YSGG laser, 2.0 W; G5: Er,Cr:YSGG laser, 2.5 W; G6: Er,Cr:YSGG laser, 3.0 W; G7: scaling and root planning (SRP) with manual curettes. The root surfaces irradiated by Er,Cr:YSGG at 1.0 W and scaling with manual curettes presented the highest degrees of ABC. The samples irradiated by the Er,Cr:YSGG laser were rougher than the samples treated by the manual curette, and increasing the laser power parameters caused more root wear and greater roughness on the root surface. The Er,Cr:YSGG laser is safe to use for periodontal treatment, but it is not appropriate to use irradiation greater than 1.0 W for this purpose. Microsc. Res. Tech. 78:529–535, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
This study evaluated the effect of Er,Cr:YSGG laser on the root canal dentin after luting a fiber post. Twenty‐four bovine teeth roots were prepared using NiTi instruments and filled with Sealer 26 and gutta‐percha. Post spaces were prepared and roots were distributed according to dentin treatment (n = 8): 2.5%NaOCl (group control), Er,Cr:YSGG laser (1.5 W, 20 Hz, 20 s) (group test 1) or 2.5%NaOCl + Er,Cr:YSGG laser (group test 2). Fiber posts were luted using adhesive cement (Rely X U200, 3M) and roots were prepared to confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The morphology of interface, thickness of cement, and the gaps and tags were analyzed. Non‐parametrical data for thickness of cement were submitted to Friedman and Kruskall–Wallis tests (α = 0.05) and parametrical data for gaps to ANOVA (α = 0.05). CLSM of the cement thickness and gaps revealed no significant difference in surface treatment (NaOCl, Er,Cr:YSGG laser and NaOCl + Er,Cr:YSGG laser) (p > .05) and canal thirds (cervical, middle, and apical) (p > 0.05). SEM showed tags and a residual layer of cement adhered to dentin, mainly in laser‐irradiated specimens. The pretreatment of root canal with Er,Cr:YSGG laser previously to luting the fiber post with a self‐adhesive cement did not influence the cement thickness and gaps but affected the dentin interaction.  相似文献   

5.
The purpose of this study was to evaluate the efficiency of the Er:YAG laser and diamond bur cavity preparation on the marginal microleakage of Class V cavities. Group 1: bur preparation (bp) + Vertise Flow (VF); Group 2: laser preparation (lp) + VF; Group 3: bp + Adper Easy One (AEO) + Filtek Ultimate Flowable Composite (FUFC); Group 4: lp + AEO + FUFC; Group 5: bp + Clearfil S3 Bond (CSB) + Clearfil Majesty Flow (CMF); Group 6: lp + CSB + CMF. Data were analyzed by Kruskal–Wallis and Mann–Whitney U tests (p < .05). More microleakage was observed in cervical regions compared to occlusal regions in all groups (p < .05). No significant difference was observed among all groups in terms of occlusal and cervical surfaces, respectively (p > .05). The use of the Er:YAG laser for cavity preparation with different adhesive systems and flowable composites did not influence microleakage.  相似文献   

6.
The purpose of this in vitro study was to evaluate the interaction pattern of adhesive systems on laser and bur cavities. Cavities were prepared according to the following groups (n=9): (G1) conventional diamond bur (No. 1013); (G2) Er:YAG laser (250 mJ, 4 Hz, 80.6 J/cm2); (G3) Er,Cr:YSGG laser (3.5 W, 20 Hz, 61.7 J/cm2). After cavity preparation, specimens were divided into three subgroups differing the adhesive systems used (n=3): (GA) AdheSE; (GB) Clearfil standard error (SE) Bond; (GC) Single Bond. After insertion of a micro-hybrid composite resin, the specimens were sectioned across the bonded surface dividing the teeth into two halves, which were prepared for SEM analysis. Cavities prepared with laser appeared to be more irregular than the bur cavities. Different patterns of gap formation and resin tags could be observed, showing the differences, advantages, and disadvantages of both types of cavities. Under the settings of the present study, resin tags were more pronounced in lased dentin than bur prepared dentin independently of the bonding systems used. On the other hand gap formation between dentin and resin in laser prepared cavities was observed suggesting collagen alteration.  相似文献   

7.
The erbium:yttrium–aluminum–garnet (Er:YAG) laser may be effective the bond strength of adhesive systems on dentine surfaces, the chemical composition and aggressiveness of adhesive systems in clinical practice. The purpose of this study was to evaluate the effects of the Er:YAG laser system with the bonding ability of two different self‐etching adhesives to caries‐affected dentine in primary molars. Ninety mid‐coronal flat dentine surfaces obtained from sound and caries‐affected human primary dentine were treated with an Er:YAG laser or a bur. The prepared surfaces were restored with an adhesive system (Xeno V; Clearfil S3) and a compomer (Dyract Extra). The restored teeth were sectioned with a low‐speed saw and 162 samples were obtained. The bond strength of the adhesive systems was tested using the micro‐tensile test method. The data were statistically analyzed. A restored tooth in each group was processed for scanning electron microscopy evaluation. The values of the highest bond strength were obtained from the Clearfil S3‐Er:YAG laser‐sound dentine group in all groups. (24.57 ± 7.27 MPa) (P > 0.05). The values of the lowest bond strength were obtained from the Xeno V‐Er:YAG laser‐sound dentine group in all groups (11.01 ± 3.89 MPa). It was determined that the Clearfil S3 increased the bond strength on the surface applied with Er:YAG laser according to the Xeno V. Microsc. Res. Tech. 77:282–288, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
The purpose of this study was to evaluate the efficiency of different irrigation activation techniques on smear layer removal. About 80 single‐rooted human maxillary central teeth were decoronated to a standardized length.The samples were prepared by using ProTaper system to size F4 and divided into eight equal groups (n = 10) according to the final irrigation activation technique; distilled water was used as an irrigant in Group 1. The other groups were treated with 2.5% NaOCl and 17% EDTA, respectively. Conventional syringe irrigation (CSI) was used in Group 2. Irrigation solutions were activated using passive ultrasonic irrigation (PUI, Group 3), EndoVac apical negative pressure (ANP, Group 4), diode laser (Group 5), Nd:YAG laser (Group 6), Er:YAG laser (Group 7), and Er:YAG laser using with photon‐induced photoacoustic streaming (PIPS?, Group 8). Teeth were split longitudinally and subjected to scanning electron microscope (SEM). PIPS showed the best removal of smear layer when compared with PUI, ANP, Nd:YAG, and Er:YAG, but the difference was not statistically significant (P > 0.05). Smear layer scores obtained with PIPS technique were statistically significant different from those of obtained with control, CSI and diode laser groups (P < 0.05). All experimental irrigation techniques except ANP and diode laser removed smear layer more effectively at the coronal and middle levels compared to the apical level (P < 0.05). Irrigation activated/delivered techniques except diode laser have a positive effect on removing of smear layer. Microsc. Res. Tech. 78:230–239, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The use of Er:YAG laser for cavity preparation: an SEM evaluation   总被引:1,自引:0,他引:1  
OBJECTIVE: The purpose of this study was to evaluate morphological changes in cavities prepared by the Er:YAG laser (2.94 mum) at different parameters of irradiation and by a diamond bur. EXPERIMENTAL DESIGN: Cavities were prepared on 27 human molars (n = 3): G1, 15 Hz/160 mJ enamel/6 Hz/200 mJ dentin; G2, 15 Hz/180 mJ enamel/6 Hz/200 mJ dentin; G3, 15 Hz/160 mJ enamel/6 Hz/250 mJ dentin; G4, 15 Hz/180 mJ enamel/6 Hz/250 mJ dentin; G5, 15 Hz/180 mJ enamel/10 Hz/180 mJ dentin; G6, 15 Hz/160 mJ enamel/10 Hz/180 mJ dentin; G7, 15 Hz/160 mJ enamel/10 Hz/160 mJ dentin; G8, 15 Hz/180 mJ enamel/10 Hz/160 mJ dentin; G9, diamond bur. For SEM analysis, samples were fixed (2.5% glutaraldheyde, 12 h, 4 degrees C), dehydrated (25-100% ethanol), dried, and sputter-coated with gold. RESULTS: Despite the changes on energy and repetition-rate settings, all laser-treated samples showed no evidence of thermal damage or signs of burning and melting. Er:YAG laser ablated dental hard tissues showed exposed enamel prisms, dentin surface without smear layer, and opened dentinal tubules. CONCLUSION: Different Er:YAG laser parameters were effective for ablation of hard tissues, creating an irregular and microretentive morphological pattern without hard tissue damage.  相似文献   

10.
The aim of the study was to evaluate the adhesion of a self‐adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All‐In‐One + Premise Flowable composite, OptiBond All‐In‐One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment. Microsc. Res. Tech. 79:334–341, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
The study aimed to evaluate the effect of different output powers of Er:YAG laser on microtensile bonding strength of indirect composite to resin cements.36 indirect composite blocks (GC Gradia DA2, Japan) size 15 × 10 × 10 mm3 were constructed, and divided into 12 groups, as follows:G1: control group (no treatment); Groups G2 to G6: treated with Er:YAG laser (2,940 nm) in noncontact mode, frequency 20 Hz, pulse duration 470 µs, with output power ranging from 2W to 6W; Groups G7 sandblasting, Groups 8 to G12: as Groups G2 to G 6 with preparatory sandblasting. One specimen from each group was analyzed by SEM; each specimen was fixed to a specialized metal jig using cyanoacrylate (Mitreapel, Beta Kimya San. Ve TIC, Iran) and debonded under tension with a universal testing machine (Zwick, Germany) at a crosshead speed of 0.5 mm min?1. Sandblasting and laser can improve bond strength above an energy level of 150 mJ. SEM evaluation of laser‐treated specimens showed irregularities and deep undercuts. T test analysis showed no significant difference between sandblasted and non‐sandblasted group, with laser output power of 0, 100, or 150 mJ (P = 0.666, P = 0.875, and P = 0.069); in the specimens irradiated with energy output of 200, 250, or 300 mJ, sandblasted specimens showed higher bond strength than non‐sandblasted ones. The results demonstrate that, in composite resin irradiated with laser at energy output of 200–300 mJ, sandblasting might be a suitable procedure to enhance bond strength of resin cement. Microsc. Res. Tech. 79:328–333, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
The aim of this study was to evaluate the adhesion of periodontal ligament fibroblasts (PDLs) on newly proposed root repair materials [Biodentine, MM‐MTA, polymethylmethacrylate (PMMA) bone cement, and SDR], in comparison with contemporary root repair materials [IRM, Dyract compomer, ProRoot MTA (PMTA), and Vitrebond]. Five discs from each material were fabricated in sterile Teflon molds, and the specimens were aged and prewetted in cell culture media for 96 hours. Three material discs were used for scanning electron microscopy (SEM) for the assessment of the attachment, density, and morphological changes in the PDLs, while two samples were used for energy dispersive x‐ray spectroscopy (SEM‐EDX) to determine the elemental composition of the materials. Human PDLs were plated onto the materials at a density of 10,000/well, and incubated for 3 days. The SEM micrographs were taken at different magnifications (500× and 5000×). In the SEM, the cells were attached and well spread‐out on the surfaces of the Biodentine, PMTA, and Dyract compomer, while varied cell densities and morphological alterations were observed in the Vitrebond, IRM, MM‐MTA, SDR, and PMMA bone cement groups. The SEM‐EDX analysis revealed a maximum calcium percentage in the PMTA specimens, as well a maximum silicon percentage in the Dyract compomer specimens. This in vitro study demonstrated that the Biodentine and Dyract compomer supported PDL cell adhesion and spreading. The PMTA presented a favorable scaffold for better attachment of the PDL cell aggregates. Therefore, the calcium and silicon content of a material may enhance the PDL cell attachment.  相似文献   

13.
Laser irradiation has been proposed as a preventive method against dental caries since it is capable to inhibit enamel demineralization by reducing carbonate and modifying organic matter, yet it can produce significant morphological changes. The purpose of this study was to evaluate the influence of Er:YAG laser irradiation on superficial roughness of deciduous dental enamel and bacterial adhesion. Fifty‐four samples of deciduous enamel were divided into three groups (n = 18 each). G1_control (nonirradiated); G2_100 (7.5 J/cm2) and G3_100 (12.7 J/cm2) were irradiated with Er:YAG laser at 7.5 and 12.7 J/cm2, respectively, under water irrigation. Surface roughness was measured before and after irradiation using a profilometer. Afterwards, six samples per group were used to measure bacterial growth by XTT cell viability assay. Adhered bacteria were observed using confocal laser scanning microscopy (CLSM) and a scanning electron microscopy (SEM). Paired t‐, one‐way analysis of variance (ANOVA), Kruskal‐Wallis and pairwise Mann–Whitney U tests were performed to analyze statistical differences (p < .05). Before treatment, samples showed homogenous surface roughness, and after Er:YAG laser irradiation, the surfaces showed a significant increase in roughness values (p < .05). G3_100 (12.7 J/cm2) showed the highest amount of Streptococcus mutans adhered (p < .05). The increase in the roughness of the tooth enamel surfaces was proportional to the energy density used; the increase in surface roughness caused by laser irradiation did not augment the adhesion of Streptococcus sanguinis; only the use of the energy density of 12.7 J/cm2 favored significantly the adhesion of S. mutans.  相似文献   

14.
Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty‐eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before‐irradiation, after‐irradiation, and after‐acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low‐vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser‐induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after‐irradiation undesired effects. Microsc. Res. Tech. 77:410–414, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
This study evaluated the shear bond strength (SBS) and internal marginal adaptation of pulp‐capping materials to dentin. Flat occlusal deep dentin surfaces were produced and randomly assigned to two groups (sound or artificial caries‐affected dentin). The specimens in each group were assigned to one of seven subgroups according to the materials used: Biodentine, Theracal LC, Ultra‐Blend plus, Calcimol LC, ApaCal ART, EQUIA Forte, and Ionoseal. Buildups (3‐mm inner diameter and 2‐mm deep) were made over the dentin surfaces. The bonded specimens were tested under shear forces at a crosshead speed of 0.8 mm/min and fracture modes were determined using a stereomicroscope at 25× magnification. The materials were applied to the pulp floor of prepared Class I cavities and then the cavities were restored with composite resin. Restored molar teeth were subjected to 5,000 thermocycles and sectioned in a bucco–lingual direction. Resin replicas were made to determine the adaptation at the pulp floor with scanning electron microscopy. Significant differences were determined among both bond strengths and gap formations of the materials. EQUIA Forte applied to both dentin substrates had a significantly higher SBS than the other materials. The bond strength of each material was not influenced by the dentin condition. Biodentine (3.03%), EQUIA Forte (7.83%), and Theracal LC (13.37%) had lower gap formations compared to other materials but were not significantly different from each other.  相似文献   

16.
The purpose of this study was to analyze, correlate, and compare the demineralization and permeability of dentin remaining after caries removal with either an Er:YAG laser, a bur, or a curette. Thirty human dentin fragments were immersed in a demineralizing solution for 20 days and were randomly divided into three groups (n = 10) for the removal of the demineralized lesion. The groups were G1—Er:YAG laser (200 mJ/6 Hz; noncontact at 12 mm; spot: 0.63 mm), G2—Bur, and G3—Curette. The specimens were then immersed in a 10% copper sulfate solution, then in a 1% dithiooxamide alcoholic solution for 30 min and kept in ammonia vapor for 7 days. Next, the specimens were examined with optical microscopy. The amount of demineralized dentin and the level of copper ion infiltration in the dentin were quantified in μm using Axion Vision software. Data were analyzed with the Kruskal‐Wallis test (p < 0.05) and Pearson's Correlation test. The analysis revealed no significant differences between the three caries removal methods in terms of their capacity to remove demineralized tissue (G1: 10.6 μm; G2: 8.4 μm; G3: 11 μm), although the laser removal generated more tissue permeability than the others methods (G1: 17.6 μm; G2: 6.6 μm; G3: 5.5 μm). The correlation between the remaining demineralized dentin and the dentin permeability was moderate for the conventional methods and higher for the Er:YAG laser. It can therefore be concluded that the laser produced an increase in permeability that was directly proportional to the amount of demineralized tissue removal. Microsc. Res. Tech. 76:225–230, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
A root-end filling material is required to fill the root-end cavity without gaps or voids, to prevent root canal reinfection and to provide periapical healing. Thus, this study evaluated the volume of marginal gaps and voids of three root-end filling materials using microcomputed tomography (micro-CT). Thirty maxillary incisors were prepared and filled with gutta-percha and endodontic sealer. The specimens were scanned using micro-CT and distributed into three groups (n = 10): White MTA, MTA Repair HP, and Bio-C Repair. The root tips were resected at 90° to the longitudinal axis and the cavity (3 mm depth) was prepared with an ultrasonic tip. The materials were handled, and the cavities were filled. The specimens were rescanned and the percentual volume of gaps and voids were analyzed. The data were analyzed using Kruskal–Wallis and Dunn tests (p < .05). No statistical difference was found in the percentage of gaps among the tested materials (p > .05). White MTA presented less voids than Bio-C and MTA Repair HP (p < .05). The materials presented a similar percentual volume of gaps and White MTA presented less voids than other tested materials.  相似文献   

18.
This study evaluates the bond strength of dentin prepared with Er:YAG laser or bur, after rewetting with chlorhexidine on long‐term artificial saliva storage and thermocycling. One hundred and twenty human third molars were sectioned in order to expose the dentin surface (n = 10). The specimens were randomly divided in 12 groups according to treatment and aging: Er:YAG laser rewetting with deionized water (LW) and 24 h storage in artificial saliva (WC); LW and 6 months of artificial saliva storage + 12.000 thermocycling (6M), LW and 12 months of artificial saliva storage + 24.000 thermocycling (12M), Er:YAG laser rewetting with 2% chlorhexidine (LC) and WC, LC and 6M, LC and 12M, bur on high‐speed turbine rewetting with deionized water (TW) and WC, TW6M, TW12M, bur on high‐speed turbine + 2% chlorhexidine (TC) and WC, TC and 6M, TC and12M. The specimens were etched with 35% phosphoric acid, washed, and dried with air. Single Bond 2 adhesive was applied and the samples were restored with a composite. Each tooth was sectioned in order to obtain 4 sticks, which were submitted to microtensile bond strength test (µTBS). The two‐way ANOVA, showed no significant differences for the interaction between the factors and for the aging factor. Tukey 5% showed that the LC group had the lowest µTBS. The rewetting with chlorhexidine negatively influenced the bond strength of the preparation with the Er:YAG laser. The artificial saliva aging and thermocycling did not interfere with dentin bond strength. Microsc. Res. Tech. 77:37–43, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The purpose of this study was to investigate the effects of different irrigation solutions on the smear layer removal and marginal adaptation of a resin‐based sealer to root canal dentine. A total of 152 instrumented roots were irrigated with the following irrigants: 9,18% etidronic acid (HEBP), 0.5, 1,2% peracetic acid (PAA), 17% ethylenediaminetetraacetic acid (EDTA), saline. The amount of smear layer was evaluated using scanning electron microscope (SEM) in seventy root samples. Eighty‐two roots were filled with AH Plus and gutta‐percha. Slices obtained from apical third of each specimen were viewed with SEM to assess marginal adaptation. Use of 9% and 18% HEBP resulted in more efficient smear layer removal in the apical third than the other chelators (p < 0.05). Higher smear layer scores in the coronal and middle thirds were obtained from 0.5%, 1% PAA groups. Regarding marginal adaptation, 18% HEBP group showed the lowest gap size values (p < 0.05), and better marginal adaptation. Etidronic acid is a promising candidate for final irrigation of root canals.  相似文献   

20.
The aim of this study was to determine the temperature increase in the pulp chamber and possible thermal effects on molecular structure of primary teeth during the irradiation with Er,Cr:YSGG laser. Primary central incisors were divided into three groups (n = 20). Labial surfaces in each group were irradiated by Er,Cr:YSGG laser within different power and frequencies as following groups: I: 0.25 W, 20 Hz, II: 0.50 W, 20 Hz, III: 0.75 W, 20 Hz. A thermocouple was placed inside the pulp chamber so that the temperature increments were recorded during the enamel irradiation. Morphological changes of enamel surfaces were experimentally evaluated by SEM. Fourier‐transform infrared spectroscopy and RAMAN analyses were carried out to determine the differentiations in the molecular structure. The experimental results obtained were analyzed statistically by means of one‐way analysis of variance. Statistically significant differences were detected between groups (p < .05). Group III exhibited the highest values for the temperature parameters. Besides, the conical craters, cracks, and formation of ablation areas were observed for all the groups. Also, it was obtained that the hydroxyapatite lost the hydroxyl ions due to the thermal effect of the laser. Temperature rise throughout the Er,Cr:YSGG laser irradiation for prevention of primary enamel demineralization presented a positive correlation with the laser output power level. The formations of adverse morphological and spectral changes were detected on the surface of teeth after the laser application. On this basis, the Er,Cr:YSGG laser applications should be treated with much more caution considering enamel surface and pulpal tissues in primary teeth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号