首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
针对解决大量程纳米位移精度测量难度大的问题,提出了新型纳米时栅传感器。就大量程、高精度位移传感器的亚微米精度加工而言,宏观尺度范围内周期性结构单元一致性制造是保证位移传感器可靠性和高精度测量的关键所在。对上述提出的问题,采用高精度自动拼接曝光技术加工并实现了大量程标尺的图形转移,结合微纳加工方式实现时栅传感器亚微米级精度的制造。通过实验验证所加工出的样机能够达到预期目标,并且测量误差峰值在500 nm以内。  相似文献   

2.
为了实现制造成本低、抗干扰性强、性能稳定的大量程、纳米精度位移测量,研究了一种基于交变电场耦合的纳米时栅位移传感器。利用虚拟仪器开发平台LabVIEW软件和PXI-5422任意波形发生器硬件设备相结合,实现标准波形的频率、幅值、相位的设置等功能。实验得出:通过调节激励信号的幅值可以避免安装位置的不同对纳米时栅精度的影响,调节相位可以提高其精度。虚拟仪器技术在纳米时栅实验中的应用为激励信号性能的改进与提高提供了技术支持,在纳米时栅特性的研究中提供方便。  相似文献   

3.
随着时栅位移传感器的产业化发展,高速测量需求的趋势日益凸显,提出了一种基于TDC-GP2的时栅位移传感器信号处理系统。该系统采用STM32F4和AD9958产生时栅位移传感器所需的高稳定、高精度励磁信号,采用高分辨率TDC-GP2数字时钟转换器来测量传感器动、定测头的感应信号相位时间差,将测量结果送入微处理器中处理,以此到达以时间测量空间的目的。经实验表明:48对极时栅传感器整周(0~360°)的误差达到±2.3″,该方案优化了电路结构,提高了时栅位移传感器的测量精度。  相似文献   

4.
为了提高时栅位移传感器的动态性能及测量精度,提出了一种基于FPGA和二维细分技术的时栅位移传感器信号处理系统;利用二维细分技术对插补脉冲进行倍频处理,降低了对插补脉冲频率的要求,通过倍频后的高频脉冲插补时栅感应信号和参考信号之间的相位差完成了时栅角位移的测量,提高测量精度;该系统在FPGA内基于NiosⅡ软核完成数据的采集和处理,简化了系统,并加入自定义指令提高了数据处理效率;实验表明,采用该系统后,时栅位移传感器在960 MHz插补脉冲下测量误差峰峰值为士1.3",实现了时栅的高精度角位移测量.  相似文献   

5.
为了提高时栅位移传感器的动态性以及测量精度,设计了一种基于SOPC技术的时栅信号处理系统,将数据的采集和处理集成在一片FPGA内,采用NiosⅡ处理,并将复杂的乘除运算加入了自定义指令,提高了时栅传感器的数据处理效率,采用傅氏级数谐波修正技术来进行误差修正,大大提高了测量精度。实验表明,采用该系统后,时栅在每分钟8转情况下误差峰峰值为2.2″。  相似文献   

6.
为提高时栅传感器位移测量精度和测量分辨力,研究采用FPGA嵌入式锁相环倍频产生4路同频且相位差为45°的高频时钟脉冲作为测量基准,利用多路并行双边沿计数方法对时栅参考信号和时栅感应信号进行相位测量,通过相位差转换得到具有高分辨力的时栅位移信号, 采用Qsys开发平台设计Nios-II软核进行数据处理,利用傅立叶级数谐波修正技术对测量结果进行误差修正,提高时栅传感器的测量精度,在72对极磁场式时栅角位移传感器上进行精度测试,实验结果表明:经过误差修正后,该系统测量的整周误差从-57.2″~ 92.5″下降到-2.0″~2.5″,作为角位移传感器满足高端装备高精度定位需求,具有重要的工程应用价值。  相似文献   

7.
针对时栅传感器信号处理系统需要高精度时间间隔测量的需要,设计了一种基于TDC-GP21芯片测量时间间隔的时栅信号处理系统.采用FPGA控制TDC芯片的高精度测量模式对整数部分时间脉冲进行计数,小数部分时间脉冲采用门电路延迟进行细测,使时间测量更为精确,从而提高了时栅位移传感器的分辨率;通过校准测量对测量结果进行补偿修正,减小了测量误差.实验结果表明:采用该系统后72对极的圆时栅在0°~360°测量范围内,传感器的原始测量精度达到±1″,分辨率为0.036″.  相似文献   

8.
为了提高时栅位移传感器的动态性以及测量精度,设计了一种基于数字内插法的时栅信号处理系统;利用粗计数法和数字内插法将时栅信号分成粗测和细测两部分分别进行测量,降低了对插补脉冲频率的要求,提高了测量精度;同时采用SOPC技术实现了系统电路的高度集成,并利用自定义指令提高了数据处理速度;实验表明,采用该系统后,时栅在40 kHz激励情况下误差为±1.2″,实现了时栅信号的高精度测量。  相似文献   

9.
在已研制成功的圆时栅的基础上,开展了比圆分度应用范围更广的直线式时栅传感器的研究。直线式时栅基于直线电机原理建立物理模型与数学模型,作为直线式时栅的理论基础和技术依据。提出了直线式时栅的机械结构型式,同时研究了增量式时栅的信号处理电路及软件系统。研究结果表明,该模块测量精度高于现有直线式传感器的中高档水平,具有较好的工艺性且成本低于现有中低档直线式传感器。  相似文献   

10.
为了提高时栅位移传感器的测量精度及分辨率,提出了一种基于STM32F4的时栅位移传感器信号处理系统;系统包括硬件电路设计和软件设计;硬件电路以STM32F4内核处理器芯片和复杂可编程逻辑器件CPLD为核心,集成了信号调理、信号处理等电路模块;运用高频时钟脉冲插补时栅位移传感器感应信号和参考信号之间的相位差,通过软件设计控制信号的采集和处理,实现了相位检测;经实验验证,采用以STM32F4为核心的时栅信号处理系统后,时栅位移传感器的角度误差峰峰值达到2.4”,实现了高精度、高分辨率的时栅角位移测量.  相似文献   

11.
设计了一种基于单片STM32F4芯片的时栅位移传感器信号处理系统,将驱动电源、信号采样以及数据处理与误差补偿集成在一片芯片中完成,采用数字频率直接合成(DDS)技术进行激励源的设计,利用输入捕获方式进行高频时钟脉冲插补来采集测量信号,由芯片集成的单周期DSP指令部件完成数据计算,并采用傅氏级数谐波修正技术来进行误差修正。实验表明:采用该系统后,72对极时栅误差峰峰值为3.29”,在保证精度的同时实现了时栅信号处理系统的集成化、小型化,降低了生产成本。  相似文献   

12.
针对时栅位移传感器网络化通信的要求日益提高,提出了一种基于μC/OS-Ⅲ和LwIP时栅位移传感器多模式网络接口设计方案。根据时栅位移传感器的特点,该系统采用基于Cortex-M4内核的微控制器STM32F407ZGT6硬件平台,利用μC/OS-Ⅲ实时操作系统和LwIP轻量型网络协议栈的特点,选择以太网、Wi-Fi、4G作为互联网通信多模式网络接口,建立各传感器之间的联系,完成时栅位移传感器产品的后台服务终端。实验结果表明,该设计能够实现远程故障诊断和校验,提高时栅位移传感器智能化和数字化水平,促进时栅产业化。  相似文献   

13.
为了实现制造成本低、易加工、高精度的位移测量,设计了一种光场耦合式的时栅位移传感器.介绍了利用基于交变光场的两路驻波合成电行波信号,并通过鉴相的方式实现空间位移转换的测量原理;完成了传感器的结构设计,给出了传感器的系统框图,具体分析了信号处理电路的功能.实验结果表明:光场耦合式的时栅位移传感器在108 mm范围内误差为±0. 5μm.  相似文献   

14.
为了解析安装参数与测量精度的关系,根据纳米时栅的基本测量原理,构建出与动、定尺间距d0和正对面积变化量ΔS相关的数学模型.通过理论推导,分析了动尺在yz平面倾斜、xy平面偏转时会导致两路驻波幅值不等、相位偏移,从而给测量结果带来二次误差.实验结果表明通过调整动尺在yz平面与xy平面上的安装,对极内原始误差由4.86μm降低至0.84μm,证明动尺在yz平面倾斜、xy平面偏转为产生二次误差的主要原因.在行程200mm测量范围内,传感器误差峰峰值为400nm.实验结果验证了理论分析的正确性,该分析为传感器结构参数优化和实验方法的改进提供了有力的支撑,为进一步提升传感器精度提供了可靠的理论依据.  相似文献   

15.
李小雨  高义  李明  杨继森 《测控技术》2017,36(7):110-115
针对时栅位移传感器的“互联网+”战略,提出了一套时栅位移传感器互联网功能设计方案.以高性能的STM32F4微控制器为核心,设计了时栅位移传感器激励信号与感应信号的高速同步采样电路与网络接口电路,结合嵌入式操作系统,搭建了网络服务器模型,实现了时栅位移传感器的远程信号采集.实验结果表明,时栅位移传感器网络化接口模型能够准确地实现传感器远程信号采集,该模型的实现为下一步时栅位移传感器的大数据误差采样、误差远程自修正以及产品大数据分析提供了技术基础.  相似文献   

16.
为了提高时栅位移传感器的测量精度,介绍了一种不通过提高时钟频率而提高时栅测量精度的方法一游标细分法.借鉴于游标卡尺对齐细分的测量方法,对时栅时钟脉冲进行二次细分,实现了高分辨率、高精度时间量的测量,避开了复杂的电子细分.为了验证该方法的有效性,搭建了一套实验平台,实践证明:采用游标细分方法后,时栅位移传感器的时钟插补脉冲在41.7 ps的高分辨率下,测量误差峰峰值为±1.4”,实现了更高精度的测量.  相似文献   

17.
为进一步提高时栅角位移测量系统的测量精度,降低生产成本和生产时间,根据时栅传感器的误差组成和误差特性,提出了一种新的误差补偿方法;同时建立了基于傅里叶函数的误差分离模型。该补偿方法将沿空间正弦分布的非线性误差转化成线性误差,并运用最小二乘法理论对系统的误差进行补偿。通过试验与测试证明,采用该方法进行误差补偿可以大幅度提高时栅角位移测量系统的测量精度。  相似文献   

18.
现有磁场式时栅位移传感器暴露出机械加工齿槽等分性差和线圈绕制参数一致性差,导致耦合磁场形成的电信号质量较差的问题.针对以上问题,提出了一种以圆形截面铁磁材料替代传统类矩形截面铁磁材料构建耦合磁场形式的传感器设计方法,该方法采用标准件作为基本阵列导磁单元,并以定制的精密线圈绕组设计一种新型的变磁阻式时栅位移传感器.文中首先利用有限元软件ANSYS Maxwell对理论模型的可行性进行了仿真验证,然后通过精度实验获取了误差范围在±1.3"内的误差曲线,仿真与样机实验验证了新型传感器设计方案的可行性.该方法的应用规避了传统的线切割开槽绕线的机械加工形式,可以在有效提高电信号质量的同时大大提高了时栅的生产效率,有利于时栅位移传感器产品化进程的推进.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号