首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of accumulative roll bonding (ARB) and rolling is used to fabricate nanolamellar Cu-Nb multilayers with individual layer thicknesses (h) of 600 μm ? h ? 10 nm with a total strain imposed between 0.5 and 11.6. Neutron diffraction, scanning electron microscopy and transmission electron microscopy are used to characterize the microstructures and measure orientation distribution functions of both phases as a function of layer thickness. Fiber plots are calculated from the orientation distribution functions in order to understand the texture evolution in the Cu and Nb layers with increasing strain. Results are compared with rolling studies of single phase Cu, single phase Nb, and cast Cu-20 wt.% Nb composite. Results indicate that textures develop in the Cu and Nb layers during ARB that are distinct from classical rolling textures frequently observed both in their single-phase counterparts and in rolled composites. The atypical texture that develops shows a preferential strengthening of specific β fiber components at the expense of others in Cu and a strengthening of the α fiber at the expense of the γ fiber in Nb. No dynamic recrystallization is observed in Cu, even at strains above 99.99%, further delineating the behavior from single phase and composite behavior previously observed. Viscoplastic self-consistent (VPSC) polycrystal simulations were carried out to provide an understanding of the texture evolution in accumulative roll bonding. Enforcing planar slip in Cu leads to texture evolution for VPSC consistent with observations. A reasonable fit for Nb could be produced via the selection of specific {1 1 0} and {1 1 2} slip systems.  相似文献   

2.
柱状晶对Fe-3%Si电工钢冷轧织构演变规律的影响   总被引:1,自引:0,他引:1  
张宁  杨平  毛卫民 《金属学报》2012,(7):782-788
Fe-3%Si电工钢铸锭中普遍存在柱状晶,其晶体学及形状各向异性对随后的热轧、冷轧及退火织构产生很大的影响.利用xRD与EBSD技术对长轴分别平行于轧面法向(ND),轧制方向(RD)和横向(TD)的柱状晶冷轧样品的织构及组织进行了研究,并对晶界的特殊作用进行了分析.结果表明,中等压下量下,3种柱状晶样品具有不同程度的{001}织构遗传性,即3种样品均不同程度的摆脱了{111}线织构的形成;柱状晶长轴平行于ND和TD时,{001}取向在冷轧时得到大的保留;柱状晶长轴平行于RD时,得到最强的{111}〈112〉织构;柱状晶长轴平行于TD时,冷轧组织中旋转立方织构及{111}〈110〉织构较强.此外,3种样品的织构均表现出由立方→{001}〈130〉→{113}〈251〉的过渡路径,与等轴多晶样品沿α线和γ线转动的路径不同.不同方向的柱状晶晶界对冷轧变形过程中晶粒转动的作用不同,但因晶粒尺寸大而作用有限,且与初始取向相关.  相似文献   

3.
Cu thin films deposited by non-mass separated ion beam deposition under various substrate bias voltages were investigated. The film textures and microstructure were analyzed by X-ray diffraction and field emission scanning electron microscopy, and the resistivity of the film was measured with the Van der Pauw method. It was found that the optimum negative substrate bias voltage for Cu films was −50 V. The Cu films deposited without substrate bias voltage showed a columnar grain structure with small grains and random orientation. However, when a substrate bias voltage of −50 V was applied, the Cu films had a non-columnar structure with a strong (111) texture and large grains. The electrical resistivity of the Cu films decreased remarkably with increasing negative substrate bias voltage, and reaching a minimum value of 1.8±0.13 μΩ cm at the substrate bias voltage of −50V.  相似文献   

4.
采用累积叠轧法制备了初始Zr层厚度不同的两种Nb/Zr金属层状复合板并对其在叠轧过程中的微观结构、织构演化和力学性能进行了研究。结果显示, Nb/Zr层状复合材料的界面结合良好,异质界面处无金属间化合物产生。随着叠轧道次增加,层状复合结构内部形成了贯穿于多个金属层的剪切带组织,初始Zr层厚度为1 mm的复合板较Zr层厚度为2 mm的复合板易于发生Zr层的颈缩、断裂和分离。Nb层内主要为位错胞状结构, Zr层内为高位错密度晶粒与动态回复晶粒的混合组织。此外,不同初始Zr层厚度的复合板中Nb层的织构演化特征不同:当初始Zr层厚度为1 mm时,Nb表现为强立方取向;当初始Zr层厚度为2 mm时,随着叠轧道次增加,旋转立方取向始终为主导的织构组分。两种复合板中Zr层的织构演化特征一致,即经一道次叠轧后,{0001}基面双峰织构为主要织构组分。随着叠轧道次增加,基面双峰织构略有减弱,同时出现了较弱的{11-20}丝织构。单轴拉伸测试表明,随着叠轧道次增加两种不同Zr层厚度的复合板屈服强度和抗拉强度均逐渐增大,而塑性延伸率呈现先减小后增大的趋势。经三道次叠轧后两种复合板的最大延伸率分别为14.2%和16.5%。叠轧过程中各金属显著的晶粒细化、Zr层内高位错密度晶粒与动态回复晶粒共存的混合组织以及Zr织构的特征演化是贡献于复合板具有高强度和良好塑性的原因。  相似文献   

5.
To meet the requirement of environment, economy and safety, advanced high strength steels including dual phased (DP), complex phased (CP), transformation- induced plasticity (TRIP) and twinning-induced plasticity (TWIP) steels are widely used for automotive steel. Among them, high manganese TWIP and TRIP steels are particularly appealing due to their outstanding tensile strength and elongation. In contrast to high manganese TWIP steel, high manganese TRIP steel exhibits higher strength and work hardening rate due to strain induced martensitic transformation. The enhanced mechanical properties of high manganese TRIP steel are determined by both the stability of the retained austenite (gamma) and the initial microstructure. Strain induced martensitic transformation and subsequent reversion from deformed martensite to gamma during annealing is often applied as one of the most effective methods for microstructure improvement. Microstructure and texture characteristics of high manganese TRIP steel during cold rolling together with the reversion of deformed bcc martensite (alpha'-M) at high temperature were investigated. It is shown that the gamma was almost completely transformed into alpha'-M at medium cold rolling reduction. And a higher reduction after alpha'-M saturation resulted in dominantly the deformation of alpha'-M, hence thin laths paralleled to the rolling direction (RD) were obtained. The main components in alpha'-M were {113}< 110 >, {554}< 225 > and rotated cube ({001}< 110 >) textures at medium cold rolling reduction, which are the typical phase transformation textures. The {113}<110> texture rotated toward a more stable orientation {223}< 110 > and led to a strong cold rolling texture (< 110 >//RD) with increasing reduction. The reversion of martensite and recrystallization of gamma proceeded at temperature ranging from 650 degrees C to 850 degrees C. The reversion of alpha'-M proceeded in a diffusional mechanism, accompanying with the redistribution of Mn and Al between gamma and alpha'-M. Deformed alpha'-M was merged by the adjacent gamma, and columnar gamma grains with a large amount of subgrains were obtained. The texture of reverted gamma was approximately the same as that of the deformed gamma, this phenomenon called texture inheritance was formed by the direct growth of gamma. Subsequently, recrystallization of gamma grains occurred by sub-grain coalescence and the columnar g grains were instead by equiaxed gamma grains.  相似文献   

6.
The texture evolution in the intermediate (the 1/4 thickness) layer of hot-rolled Al-Cu-Mg alloy sheets was investigated by the x-ray diffraction technique, electron backscattered diffraction analysis and transmission electron microscopy observation. The results showed that a texture transition from the shear texture {001}<110> to the β-fiber textures occurred as the rolling temperature increased to 420 °C. The shear strain caused by friction resulted in this strong shear texture formation at the low rolling temperature. As the rolling temperature increased, the plane strain substituting the shear strain dominated in the intermediate layer, giving rise to a significant increase in the β-fiber textures. Increasing the rolling temperature was found to preferentially activate the non-octahedral {112}<110> slip system, thereby benefiting the development of strong Brass. At the low rolling reduction of 74%, the textures with low intensity tended to converge on the α-fiber, containing Goss, Brass, P and L components. As the rolling reduction increased to 90%, the textures were strengthened and gradually flew toward the β-fiber, containing Brass, Copper and S components. The S and Copper bands were found to be the preferential sites for the development of recrystallizing Cube grains during hot rolling.  相似文献   

7.
We present a method for characterizing the full five parameter heterophase interface character distributions (HICD) using two-dimensional electron back-scatter diffraction (EBSD) images. We apply the HICD method to determine the orientation relationships and three-dimensional normal vectors of Cu-Nb interfaces in both physical vapor-deposited (PVD) pure Cu-Nb (4 μm individual layer thickness) and accumulative roll-bonded (ARB) alloyed Cu-Nb multilayer composites (200-600 nm layer thickness). The HICD analysis shows that {1 1 2}Cu planes are most preferentially and frequently bonded with {1 1 2}Nb planes with Kurdjumov-Sachs and Nishiyama-Wasserman misorientations in the ARB alloyed Cu-Nb multilayers. These interfaces differ from the {1 1 1}Cu||{1 1 0}Nb interfaces predominantly found in the PVD pure Cu-Nb multilayered thin films. Also, pure tilt type interfaces with a [1 1 1]/30° misorientation and {1 1 0}Cu planes bonded to {1 1 2}Nb planes were found in ARB alloyed Cu-Nb multilayers. In the ARB material the observed Cu-Nb interfaces differ from what would be obtained from random pairings of the Cu and Nb orientations in terms of the relative intensities (in multiples of random distribution) and shapes of the interface normal peaks, which indicates that these interfaces were preferentially selected during the high strain ARB process. The measured ARB textures along the interface also differ from the theoretical rolling textures for each bulk single phase metal, suggesting that during ARB layer refinement these interfaces have some influence on slip activity by constraining grain deformation or through the kinetics of dislocation-interface interactions.  相似文献   

8.
1 INTRODUCTIONMagnesiumisthelightestmetallicstructurema terialwithhighspecificstrengthandthereforeiswidelyusedinautomotive ,electronicsandaerospaceindustries[1,2 ] .However ,magnesiumoftenshowsinsufficientplasticityatroomtemperatureduetoitsHCPstructurewithlessindependentsystemsofbasalslip .Toenhanceformabilityofmagnesium ,ahigherdeformingtemperatureisusuallyusedwithtwopur poses .Thefirstistoactivatenewslipsystemsbesidesbasalslip ,sothatmorethanfiveindependentslipsystemscanbeprovided ,be…  相似文献   

9.
The significant occupancy of {411}148texture exists in the thin-gauge grain-oriented silicon steel(TGCRGO is defined that thickness of the sheet is0.25 mm and the reduction in cold rolling is more than 90%) which has been considered to have obviously effects on the abnormal growth of Goss-oriented grains during the secondary recrystallization process. The microstructures of the TG-CRGO were investigated by X-ray diffraction and electron back-scattered diffraction in this study. It was found that {411}148texture mainly exists in the center layer of hot-rolled as well as normalized plates.With the increase in cold rolling reduction, {411}148 orientation gradually rotates to a-fiber texture(110//RD).Finally, few {411}148would retain at the boundaries of deformed a-fiber grains(110//RD) as the reduction in cold rolling reaches 90%. After annealing treatment, a small amount of c-fiber textures(111//ND) preferably nucleates and recrystallizes between the DBs(deformation bands) at first; then, the {411}148 recrystallization texture occurs and mainly nucleates at the grains boundaries of the deformed a-fiber grains, and also quite a few {411}148orientation grains nucleate in the inner of {112}110grains. But this phenomenon was not observed in the {100}011deformation grains.With respect to the occurrence of {411}148recrystallization texture, it is mainly induced by strong a-fiber as well as weak c-fiber textures formed during cold rolling other than originating from {411}148 regions in hot bands.  相似文献   

10.
Metallic-based multilayered nanocomposites are recognized for their increased plastic flow resistance and indentation hardness, increased ductility, improved radiation damage resistance, improved electrical and magnetic properties, and enhanced fatigue failure resistance compared to conventional metallic materials. One of the ways in which these classes of materials are manufactured is through accumulated roll bonding where the material is produced by several rolling and heat-treatment steps during which the layer thickness is reduced through severe plastic deformation. A single rolling pass of the accumulated roll bonding process in which a Cu/Nb-layered composite with an initial average layer thickness of 24 μm subjected to a 50% height reduction is modeled. A single-crystal model based upon thermally activated dislocation motion is used. Nanohardness tests for both the Cu and Nb layers are used to help initialize the model for each of the two materials. Electron backscatter diffraction (EBSD) data of the heat-treated material is used to characterize the initial state of the composite and to produce 40 combined morphological and crystallographic numerical model realizations of the material. The results suggest very good agreement between the predicted and experimental textures for both the materials. Highly oriented microstructure develops during severe plastic rolling deformation of Cu/Nb nanocomposites. The deformation textures significantly deviate from those expected when rolling Cu or Nb alone, and the Cu/Nb interfaces do not correspond to those with the lowest possible formation energies. We study the interfacial stability of specific Cu/Nb bicrystal configurations under rolling conditions using a finite-element crystal plasticity model. Specifically, we examine how slip activity and lattice reorientation are affected by the kinematic constraint imposed by the interface. Our results show that for certain configurations the slip activity and lattice rotation of the individual crystallites display some sensitivity to the kinematic constraint, yet the overall stability of a given bicrystal can be predicted by the stability of the individual single-crystal orientations. Future work will account for the influence of the bimetal interface on the interface stability and development of enhanced properties.  相似文献   

11.
采用光学显微镜、X射线衍射仪及扫描电镜对含稀土无取向硅钢整个生产流程中的显微组织及织构演变进行研究。结果表明,热轧板在厚度方向上有显著的分层,即表层的再结晶层、过渡层、中间层的变形组织层,其织构主要包含铜型、黄铜型织构;正火后晶粒发生了完全再结晶,织构类型相对热轧基本无变化,但强度减弱;两次冷轧后的组织均为纤维组织,形成了以α、γ线性织构为主的织构类型,还出现了强度较高的反高斯织构如{001}<110>、{112}<110>、{111}<110>;脱碳退火后发生部分再结晶,织构相对于冷轧态α、γ线性织构强度均减小;在高温退火阶段晶粒发生再结晶,存在以{111}<112>、{111}<110>为主的γ织构,以及{100}<001>织构。  相似文献   

12.
润滑对3104铝合金板变形织构的影响   总被引:1,自引:1,他引:1  
在无润滑(WOL)和润滑(WL)2种轧制条件下,分别对2.3 mm厚的热轧3104铝合金板进行不同压下量的冷轧.应用取向分布函数(ODF)定量计算和分析在不同轧制压下量下润滑对3104铝合金板材沿板厚方向织构演变的影响.结果表明:随着轧制压下量的增加,样品各层的织构组分强度均逐渐增加;无润滑轧制时样品表面层主要织构组分取向密度普遍高于相同压下量下润滑轧制时的取向密度.导致表面层织构组分增强的原因是摩擦引起应变状态改变的结果.  相似文献   

13.
The finite element polyerystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20% Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20% Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites.  相似文献   

14.
The significant occupancy of {411}<148> texture exists in the thin-gauge grain-oriented silicon steel (TG-CRGO is defined that thickness of the sheet is <0.25 mm and the reduction in cold rolling is more than 90%) which has been considered to have obviously effects on the abnormal growth of Goss-oriented grains during the secondary recrystallization process. The microstructures of the TG-CRGO were investigated by X-ray diffraction and electron back-scattered diffraction in this study. It was found that {411}<148> texture mainly exists in the center layer of hot-rolled as well as normalized plates. With the increase in cold rolling reduction, {411}<148> orientation gradually rotates to α-fiber texture (<110>//RD). Finally, few {411}<148> would retain at the boundaries of deformed α-fiber grains (<110>//RD) as the reduction in cold rolling reaches 90%. After annealing treatment, a small amount of γ-fiber textures (<111>//ND) preferably nucleates and recrystallizes between the DBs (deformation bands) at first; then, the {411}<148> recrystallization texture occurs and mainly nucleates at the grains boundaries of the deformed α-fiber grains, and also quite a few {411}<148> orientation grains nucleate in the inner of {112}<110> grains. But this phenomenon was not observed in the {100}<011> deformation grains. With respect to the occurrence of {411}<148> recrystallization texture, it is mainly induced by strong α-fiber as well as weak γ-fiber textures formed during cold rolling other than originating from {411}<148> regions in hot bands.  相似文献   

15.
高纯铝在轧制及退火过程中微观组织与织构的演变   总被引:5,自引:0,他引:5  
应用光学金相和取向分布函数(ODF)研究和分析了热轧、冷轧及退火对高纯铝箔微观组织及织构的影响。结果表明:热轧后中间退火,微观组织为等轴晶,晶粒取向为旋转立方织构;冷轧过程中,随压下量的增加,晶粒由待轴状逐渐学演变为纤维状,织构由弱到强,最后稳定在S织构、黄酮织构和铜织构三个织构组分;成品退火过程中,发生再结晶和晶粒长大,退火织构主要由立方织构组成,另含有少量R织构。  相似文献   

16.
张宁  杨平  毛卫民 《金属学报》2012,(3):307-314
在对长轴分别平行于板法向(ND)、轧向(RD)、横向(TD)的柱状晶样品冷轧组织及织构演变规律分析的基础上,利用XRD与EBSD技术,对不同退火温度下各样品再结晶织构的形成规律进行分析.结果表明,柱状晶样品再结晶织构的演变,一方面体现了初始取向晶粒的"遗传性",即立方织构与Goss织构的形成;另一方面又展示了柱状晶样品不同于单晶及多晶的"特殊性",即{113}织构的形成、Goss晶粒大大超过立方晶粒的生长能力及TD样品中{110}〈110〉取向晶粒的消失.退火温度的变化在不同样品中可造成立方织构的增强或减弱,这取决于再结晶时的形核及长大环境,分析认为TD样品低温时形成最强的立方织构与其在冷轧过程中最强的晶界阻力有关.综合考虑各再结晶织构的转变规律,其形成与定向形核及定向长大均相关.研究还证实,3种柱状晶样品中等压下量冷轧并退火后都可抑制γ线织构的形成.  相似文献   

17.
In high purity aluminium two different types of hot band textures were produced by changing the final hot rolling temperatures. The texture of the hot bands was found to be inhnmogeneous through thickness. The strong preferred orientation of {001}<110> developed in the surface layer of the hot band which had been rolled at the higher finishing temperature. For the lower finishing temperature sample, the cold rolling type of texture was formed in the hot band. The cold rolling texture was dependent on the initial hot rolling texture. The hot band which had strong {001}<110> at the surface layer led to the maximum orientation density at {44 11}<11 11 8> after the subsequent cold rolling. Preferred orientations near {123}<634> in the hot band caused the maximum at {123}<634> in the cold rolling texture. The experimental results were discussed based on the simulation test of deformation texture in which the rotation of orientations was calculated from the Taylor model. In this calculation, the strain state of the deformation zone in the rolling gap is assumed to vary with shears induced from the geometry and the friction.  相似文献   

18.
The texture evolution of Fe base Fe-Ni alloys was systematically investigated for various processing parameters. The hot bands consisted of recryslallized grains and revealed diffuse textures except for the center layer where a weak cube component developed. The cold rolling texture development was characterized. regardless of Ni content, such that the orientation densities of the texture components belonging to the β-fibre were nearly similar for a given rolling reduction and systematically increased with rolling reduction On annealing the Cube component dominated the recrystallization texture, and its orientation density depended on cold rolling reduction. These characteristics of the texture development is similar to those of pure copper. The similarity of the texture evolution in Fe-Ni alloys and pure copper is attributed to the fact that they have commonly medium stacking fault energies  相似文献   

19.
A comparative study of structural, electrical and thermoelectric properties of nanocrystalline copper thin films deposited using anodic vacuum arc plasma deposition technique and dc-magnetron sputtering is presented. The crystallographic texture and structural evolution of these films are investigated as a function of thickness within a range of 30 to 230 nm using XRD and SEM. AVA deposited Cu films possess smaller grains with a lesser degree of crystallinity than dc-sputtered ones. Electrical resistivity, temperature coefficient of resistance and thermoelectric power of both as-deposited and annealed Cu films of AVA and dc-magnetron sputtering is measured and their dependence on the film thickness is investigated. AVA deposited Cu films having thickness less than 100 nm show much higher resistivity than dc-sputtered ones. AVA deposited Cu films possess lower temperature coefficient of resistance values than dc-sputtered ones. The observed thickness dependence of thermoelectric power is larger in AVA deposited Cu films than in dc-sputtered ones. These electrical measurements reveal that AVA deposited Cu films possess more vacancies than dc-sputtered ones.  相似文献   

20.
采用ODF法(晶体取向分布函数法)研究和分析了润滑剂对高纯铝冷轧形变织构的影响,揭示了两种润滑条件下形变织构的演变规律。结果表明:大冷轧变形程度下,采用机油润滑,形变织构为典型的面心立方金属的轧制织构,即由强的B-、Cu-及S-织构组分构成,而且取向分布的密度峰值处在S-取向位置;煤油润滑时轧制织构相对较弱,但Cu织构最强,同时产生了明显的剪切织构{001}<110>(Rot.Cube-织构)。采用机油润滑时,轧制变形比较均匀。低变形轧制时晶粒取向聚集于α线,随变形量的增加,向β线取向聚集,大变形量下最终形变织构为铜型轧制织构;而煤油粘度小,轧制过程中接触表面摩擦因数较大,不均匀变形严重,低轧制程度时发现有表面剪切Rot.Cube-织构,随着塑性变形的增大,Rot.Cube-织构逐渐向Cu-取向转化;变形至95%后,随着变形程度的增加,S-织构减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号