首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
High‐refresh‐rate displays (e. g., 120 Hz) have recently become available on the consumer market and quickly gain on popularity. One of their aims is to reduce the perceived blur created by moving objects that are tracked by the human eye. However, an improvement is only achieved if the video stream is produced at the same high refresh rate (i. e. 120 Hz). Some devices, such as LCD TVs, solve this problem by converting low‐refresh‐rate content (i. e. 50 Hz PAL) into a higher temporal resolution (i. e. 200 Hz) based on two‐dimensional optical flow. In our approach, we will show how rendered three‐dimensional images produced by recent graphics hardware can be up‐sampled more efficiently resulting in higher quality at the same time. Our algorithm relies on several perceptual findings and preserves the naturalness of the original sequence. A psychophysical study validates our approach and illustrates that temporally up‐sampled video streams are preferred over the standard low‐rate input by the majority of users. We show that our solution improves task performance on high‐refresh‐rate displays.  相似文献   

2.
We present a practical real‐time approach for rendering lens‐flare effects. While previous work employed costly ray tracing or complex polynomial expressions, we present a coarser, but also significantly faster solution. Our method is based on a first‐order approximation of the ray transfer in an optical system, which allows us to derive a matrix that maps lens flare‐producing light rays directly to the sensor. The resulting approach is easy to implement and produces physically‐plausible images at high framerates on standard off‐the‐shelf graphics hardware.  相似文献   

3.
Light field videos express the entire visual information of an animated scene, but their shear size typically makes capture, processing and display an off‐line process, i. e., time between initial capture and final display is far from real‐time. In this paper we propose a solution for one of the key bottlenecks in such a processing pipeline, which is a reliable depth reconstruction possibly for many views. This is enabled by a novel correspondence algorithm converting the video streams from a sparse array of off‐the‐shelf cameras into an array of animated depth maps. The algorithm is based on a generalization of the classic multi‐resolution Lucas‐Kanade correspondence algorithm from a pair of images to an entire array. Special inter‐image confidence consolidation allows recovery from unreliable matching in some locations and some views. It can be implemented efficiently in massively parallel hardware, allowing for interactive computations. The resulting depth quality as well as the computation performance compares favorably to other state‐of‐the art light field‐to‐depth approaches, as well as stereo matching techniques. Another outcome of this work is a data set of light field videos that are captured with multiple variants of sparse camera arrays.  相似文献   

4.
Astronomical nebulae are among the most complex and visually appealing phenomena known outside the bounds of the Solar System. However, our fixed vantage point on Earth limits us to a single known view of these objects, and their intricate volumetric structure cannot be recovered directly. Recent approaches to reconstructing a volumetric 3D model use the approximate symmetry inherent to many nebulae, but require several hours of computation time on large multi‐GPU clusters. We present a novel reconstruction algorithm based on group sparsity that reaches or even exceeds the quality of prior results while taking only a fraction of the time on a conventional desktop PC, thereby enabling end users in planetariums or educational facilities to produce high‐quality content without expensive hardware or manual modeling. In principle, our approach can be generalized to other transparent phenomena with arbitrary types of user‐specified symmetries.  相似文献   

5.
Depth‐of‐field is one of the most crucial rendering effects for synthesizing photorealistic images. Unfortunately, this effect is also extremely costly. It can take hundreds to thousands of samples to achieve noise‐free results using Monte Carlo integration. This paper introduces an efficient adaptive depth‐of‐field rendering algorithm that achieves noise‐free results using significantly fewer samples. Our algorithm consists of two main phases: adaptive sampling and image reconstruction. In the adaptive sampling phase, the adaptive sample density is determined by a ‘blur‐size’ map and ‘pixel‐variance’ map computed in the initialization. In the image reconstruction phase, based on the blur‐size map, we use a novel multiscale reconstruction filter to dramatically reduce the noise in the defocused areas where the sampled radiance has high variance. Because of the efficiency of this new filter, only a few samples are required. With the combination of the adaptive sampler and the multiscale filter, our algorithm renders near‐reference quality depth‐of‐field images with significantly fewer samples than previous techniques.  相似文献   

6.
Image‐based rendering (IBR) techniques allow capture and display of 3D environments using photographs. Modern IBR pipelines reconstruct proxy geometry using multi‐view stereo, reproject the photographs onto the proxy and blend them to create novel views. The success of these methods depends on accurate 3D proxies, which are difficult to obtain for complex objects such as trees and cars. Large number of input images do not improve reconstruction proportionally; surface extraction is challenging even from dense range scans for scenes containing such objects. Our approach does not depend on dense accurate geometric reconstruction; instead we compensate for sparse 3D information by variational image warping. In particular, we formulate silhouette‐aware warps that preserve salient depth discontinuities. This improves the rendering of difficult foreground objects, even when deviating from view interpolation. We use a semi‐automatic step to identify depth discontinuities and extract a sparse set of depth constraints used to guide the warp. Our framework is lightweight and results in good quality IBR for previously challenging environments.  相似文献   

7.
A major challenge in generating high‐fidelity virtual environments (VEs) is to be able to provide realism at interactive rates. The high‐fidelity simulation of light and sound is still unachievable in real time as such physical accuracy is very computationally demanding. Only recently has visual perception been used in high‐fidelity rendering to improve performance by a series of novel exploitations; to render parts of the scene that are not currently being attended to by the viewer at a much lower quality without the difference being perceived. This paper investigates the effect spatialized directional sound has on the visual attention of a user towards rendered images. These perceptual artefacts are utilized in selective rendering pipelines via the use of multi‐modal maps. The multi‐modal maps are tested through psychophysical experiments to examine their applicability to selective rendering algorithms, with a series of fixed cost rendering functions, and are found to perform significantly better than only using image saliency maps that are naively applied to multi‐modal VEs.  相似文献   

8.
The quality of shadow mapping is traditionally limited by texture resolution. We present a novel lossless compression scheme for high‐resolution shadow maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can compactly represent homogeneous regions of shadow maps at coarser levels, but require many nodes for fine details. By conservatively adapting the depth map, we can significantly reduce the tree complexity. Our proposed method offers high compression rates, avoids quantization errors, exploits coherency along all data dimensions, and is well‐suited for GPU architectures. Our approach can be applied for coherent shadow maps as well, enabling several applications, including high‐quality soft shadows and dynamic lights moving on fixed‐trajectories.  相似文献   

9.
Capturing exposure sequences to compute high dynamic range (HDR) images causes motion blur in cases of camera movement. This also applies to light‐field cameras: frames rendered from multiple blurred HDR light‐field perspectives are also blurred. While the recording times of exposure sequences cannot be reduced for a single‐sensor camera, we demonstrate how this can be achieved for a camera array. Thus, we decrease capturing time and reduce motion blur for HDR light‐field video recording. Applying a spatio‐temporal exposure pattern while capturing frames with a camera array reduces the overall recording time and enables the estimation of camera movement within one light‐field video frame. By estimating depth maps and local point spread functions (PSFs) from multiple perspectives with the same exposure, regional motion deblurring can be supported. Missing exposures at various perspectives are then interpolated.  相似文献   

10.
We describe how the pipeline for 3D online reconstruction using commodity depth and image scanning hardware can be made scalable for large spatial extents and high scanning resolutions. Our modified pipeline requires less than 10% of the memory that is required by previous approaches at similar speed and resolution. To achieve this, we avoid storing a 3D distance field and weight map during online scene reconstruction. Instead, surface samples are binned into a high‐resolution binary voxel grid. This grid is used in combination with caching and deferred processing of depth images to reconstruct the scene geometry. For pose estimation, GPU ray‐casting is performed on the binary voxel grid. A one‐to‐one comparison to level‐set ray‐casting in a distance volume indicates slightly lower pose accuracy. To enable unlimited spatial extents and store acquired samples at the appropriate level of detail, we combine a hash map with a hierarchical tree representation.  相似文献   

11.
We present an automatic image‐recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. Our approach can be efficiently implemented on GPUs, and we show that for typical image sizes it is up to two orders of magnitude faster than the current state‐of‐the‐art technique. Unlike previous approaches, ours preserve temporal coherence and, therefore, is suitable for video recoloring. We demonstrate the effectiveness of our technique by integrating it into a visualization system and showing, for the first time, real‐time high‐quality recolored visualizations for dichromats.  相似文献   

12.
We present a novel algorithm to reconstruct high‐quality images from sampled pixels and gradients in gradient‐domain Rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per‐pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.  相似文献   

13.
We present the design of an interactive image‐based modeling tool that enables a user to quickly generate detailed 3D models with texture from a set of calibrated input images. Our main contribution is an intuitive user interface that is entirely based on simple 2D painting operations and does not require any technical expertise by the user or difficult pre‐processing of the input images. One central component of our tool is a GPU‐based multi‐view stereo reconstruction scheme, which is implemented by an incremental algorithm, that runs in the background during user interaction so that the user does not notice any significant response delay.  相似文献   

14.
We present a multi‐view stereo reconstruction technique that directly produces a complete high‐fidelity head model with consistent facial mesh topology. While existing techniques decouple shape estimation and facial tracking, our framework jointly optimizes for stereo constraints and consistent mesh parameterization. Our method is therefore free from drift and fully parallelizable for dynamic facial performance capture. We produce highly detailed facial geometries with artist‐quality UV parameterization, including secondary elements such as eyeballs, mouth pockets, nostrils, and the back of the head. Our approach consists of deforming a common template model to match multi‐view input images of the subject, while satisfying cross‐view, cross‐subject, and cross‐pose consistencies using a combination of 2D landmark detection, optical flow, and surface and volumetric Laplacian regularization. Since the flow is never computed between frames, our method is trivially parallelized by processing each frame independently. Accurate rigid head pose is extracted using a PCA‐based dimension reduction and denoising scheme. We demonstrate high‐fidelity performance capture results with challenging head motion and complex facial expressions around eye and mouth regions. While the quality of our results is on par with the current state‐of‐the‐art, our approach can be fully parallelized, does not suffer from drift, and produces face models with production‐quality mesh topologies.  相似文献   

15.
We propose a series of techniques for hybridizing implicit and semi‐implicit time integration methods in a manner that retains much of the speed of the implicit method without sacrificing all of the higher quality vibrations one obtains with methods that handle elastic forces explicitly. We propose our scheme in the context of asynchronous methods, where different parts of the mesh are evolved at different time steps. Whereas traditional asynchronous methods evolve each element independently, we partition all of our elements into two groups: one group evolved at the frame rate using a fully implicit scheme, and another group which takes a number of substeps per frame using a scheme that is implicit on damping forces and explicit on the elastic forces. This allows for a straightforward coupling between the implicit and semi‐implicit methods at frame boundaries for added stability. As has been stressed by various authors, asynchronous schemes take some of the pressure off of mesh generation, allowing time evolution to remain efficient even in the face of sliver elements. Finally, we propose a force distributing projection method which allows one to redistribute the forces felt on boundaries between implicit and semi‐implicit regions of the mesh in a manner that yields improved visual quality.  相似文献   

16.
Image matting aims at extracting foreground elements from an image by means of color and opacity (alpha) estimation. While a lot of progress has been made in recent years on improving the accuracy of matting techniques, one common problem persisted: the low speed of matte computation. We present the first real‐time matting technique for natural images and videos. Our technique is based on the observation that, for small neighborhoods, pixels tend to share similar attributes. Therefore, independently treating each pixel in the unknown regions of a trimap results in a lot of redundant work. We show how this computation can be significantly and safely reduced by means of a careful selection of pairs of background and foreground samples. Our technique achieves speedups of up to two orders of magnitude compared to previous ones, while producing high‐quality alpha mattes. The quality of our results has been verified through an independent benchmark. The speed of our technique enables, for the first time, real‐time alpha matting of videos, and has the potential to enable a new class of exciting applications.  相似文献   

17.
Feature learning for 3D shapes is challenging due to the lack of natural paramterization for 3D surface models. We adopt the multi‐view depth image representation and propose Multi‐View Deep Extreme Learning Machine (MVD‐ELM) to achieve fast and quality projective feature learning for 3D shapes. In contrast to existing multi‐view learning approaches, our method ensures the feature maps learned for different views are mutually dependent via shared weights and in each layer, their unprojections together form a valid 3D reconstruction of the input 3D shape through using normalized convolution kernels. These lead to a more accurate 3D feature learning as shown by the encouraging results in several applications. Moreover, the 3D reconstruction property enables clear visualization of the learned features, which further demonstrates the meaningfulness of our feature learning.  相似文献   

18.
We present a real‐time method for rendering a depth‐of‐field effect based on the per‐pixel layered splatting where source pixels are scattered on one of the three layers of a destination pixel. In addition, the missing information behind foreground objects is filled with an additional image of the areas occluded by nearer objects. The method creates high‐quality depth‐of‐field results even in the presence of partial occlusion, without major artifacts often present in the previous real‐time methods. The method can also be applied to simulating defocused highlights. The entire framework is accelerated by GPU, enabling real‐time post‐processing for both off‐line and interactive applications.  相似文献   

19.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

20.
We propose a versatile pipeline to render B‐Rep models interactively, precisely and without rendering‐related artifacts such as cracks. Our rendering method is based on dynamic surface evaluation using both tesselation and ray‐casting, and direct GPU surface trimming. An initial rendering of the scene is performed using dynamic tesselation. The algorithm we propose reliably detects then fills up cracks in the rendered image. Crack detection works in image space, using depth information, while crack‐filling is either achieved in image space using a simple classification process, or performed in object space through selective ray‐casting. The crack filling method can be dynamically changed at runtime. Our image space crack filling approach has a limited runtime cost and enables high quality, real‐time navigation. Our higher quality, object space approach results in a rendering of similar quality than full‐scene ray‐casting, but is 2 to 6 times faster, can be used during navigation and provides accurate, reliable rendering. Integration of our work with existing tesselation‐based rendering engines is straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号