首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Inflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF alpha), are known to activate sphingomyelinase (SMase) and nuclear factor-kappaB (NF-kappaB) in certain cell types, which also stimulate inducible nitric oxide synthase (iNOS) gene in vascular smooth muscle cells (VSMCs). However, it remains unknown whether the SMase pathway is involved in iNOS gene expression in VSMCs. Therefore, the present study was designed to examine whether SMase induces iNOS gene expression via the NF-kappaB activation pathway similar to that of IL-1beta and TNF alpha in cultured rat VSMCs. Neutral SMase, although less potently than IL-1beta and TNF alpha, stimulated nitrite/nitrate (NOx) production, and iNOS messenger RNA and protein expression, as assessed by Northern and Western blot analyses, respectively. Neutral SMase, IL-1beta, and TNF alpha activated NF-kappaB, as revealed by electrophoretic mobility shift assay, and its nuclear translocation, as demonstrated by immunocytochemical study. Neutral SMase potentiated NOx production, iNOS expression, and NF-kappaB activation stimulated by TNF alpha, but not by IL-1beta. Aldehyde peptide proteasome inhibitors completely blocked NOx production, iNOS expression, NF-kappaB activation, and its nuclear translocation induced by cytokines and neutral SMase. IL-1beta and TNF alpha, but not neutral SMase, caused a transient decrease in IkappaB-alpha protein levels, whereas IkappaB-beta protein expression was not affected by either agent. Proteasome inhibitors prevented cytokine-mediated IkappaB-alpha degradation. Several cell-permeable ceramide analogs (C2, C6, and C8), hydrolysis products of sphingomyelin, activated NF-kappaB less potently than neutral SMase, but had no effect on NOx production. These results demonstrate an essential role of NF-kappaB activation in mediation of neutral SMase-induced iNOS expression, but distinct from the proteasome-mediated IkappaB-alpha degradation by cytokines, suggesting the possible involvement of an additional signaling pathway(s).  相似文献   

16.
17.
Airway smooth muscle may be an important cellular source of proinflammatory mediators and cytokines and may participate directly in airway inflammation. In this study we have examined whether airway smooth muscle cells could contribute to mechanisms of eosinophil accumulation by prolonging their survival. To investigate this possibility, conditioned medium from human airway smooth muscle cells stimulated with interleukin (IL)-1beta was examined on the in vitro survival of highly purified human peripheral blood eosinophils. After 7 d, when cultured in control medium, less than 1 +/- 0.2% of the initial eosinophil population remained viable. In contrast, culture in medium conditioned for 96 h by human airway smooth muscle cells stimulated with IL-1beta (1 pg-100 ng/ml) resulted in a concentration-dependent increase in eosinophil survival. (The concentration that produced 50% of this effect was 0.03 ng/ml IL-1beta.) Maximum eosinophil survival occurred at 1 to 3 ng/ml IL-1beta. This effect was also time-dependent and was readily detected in airway smooth muscle cell-conditioned medium after just 3 h of stimulation with IL-1beta (1 ng/ml). It continued to increase before reaching a plateau around 24 h, with no decrease in activity for up to 120 h of stimulation. Conditioned medium from unstimulated airway smooth muscle cells did not enhance eosinophil survival. The survival-enhancing activity was completely inhibited (the concentration that inhibited 50% [IC50] was 6.9 microg/ml) by a polyclonal goat antihuman antibody to granulocyte-macrophage colony stimulating factor (GM-CSF) (0.3-100 microg/ml), but antibodies (10-100 microg/ml) to IL-3 and IL-5, and a normal goat immunoglobulin G control had no effect on the eosinophil survival-enhancing activity. GM-CSF levels in culture medium from smooth muscle cells were markedly increased by IL-1beta and were maximum at 30 ng/ml (0.037 ng/ml/10(6) cells versus 3.561 ng/ml/10(6) cells, unstimulated versus 30 ng/ml IL-1beta). The IL-1 receptor antagonist inhibited both the production of GM-CSF (IC50 19. 1 ng/ml) and the eosinophil survival-enhancing (IC50 53.7 ng/ml) activity stimulated by IL-1beta. Release of GM-CSF elicited by IL-1beta was inhibited by dexamethasone but not by indomethacin. These data indicate that cultured human airway smooth muscle cells stimulated with IL-1beta support eosinophil survival through production of GM-CSF and thus may contribute to the local control of inflammatory cell accumulation in the airways.  相似文献   

18.
19.
We have investigated the role of platelets in regulating the hemostatic and vasomotor properties of vascular smooth muscle. Experiments were performed to examine the effect of the releasate from activated platelets on the production of nitric oxide from interleukin-1 beta (IL-1 beta)-treated cultured rat aortic smooth muscle cells. Treatment of vascular smooth muscle cells with IL-1 beta resulted in significant accumulation of nitrite in the culture media and in marked elevation of intracellular cyclic guanosine monophosphate (GMP) levels. The releasate from collagen-aggregated platelets blocked the IL-1 beta-mediated production of nitrite and the accumulation of cyclic GMP in smooth muscle cells in a platelet number-dependent manner. In functional assays, the perfusates from columns containing IL-1 beta-treated smooth muscle cells relaxed detector blood vessels without endothelium and the addition of IL-1 beta-treated smooth muscle cells to suspensions of platelets inhibited their thrombin-induced aggregation. The simultaneous treatment of smooth muscle cells with IL-1 beta and the platelet releasate abolished both the vasorelaxing activities of the perfusates and the inhibition of platelet aggregation. Platelet releasates treated with a neutralizing antibody to platelet-derived growth factor (PDGF) failed to block IL-1 beta-induced nitric oxide production by the smooth muscle cells, as measured by both biochemical and functional assays. The platelet releasate from a patient with gray platelet syndrome likewise failed to block IL-1 beta-induced nitrite release by smooth muscle cells. These results demonstrate that platelets downregulate the production of nitric oxide by IL-1 beta-treated vascular smooth muscle cells through the release of PDGF. This effect may represent a novel mechanism by which platelets regulate vasomotor tone and thrombus formation at sites of vascular injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号