首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ag/C catalysts with different loading were prepared using a colloidal route to obtain well dispersed catalysts on carbon, with a particle size close to 15 nm. An amount of 20 wt.% Ag on carbon was found to be the best loading in terms of current density and mass activity. The 20 wt.% Ag/C catalyst was then studied and the kinetics towards ORR was determined and compared with that of a 20 wt.% Pt/C catalyst. The number of exchanged electrons for the ORR was found to be close to four with the rotating disk electrode (RDE) as well as with the rotating ring disc electrode (RRDE) techniques. From the RDE results, the Tafel slopes b, the diffusion limiting current density inside the catalytic film (jlfilm) and the exchange current density (j0) were evaluated. The Tafel slopes b and diffusion limiting current densities inside the catalytic film (jlfilm) were found to be in the same order for both catalysts, whereas the exchange current density (j0), which is a suitable estimation of the activity of the catalyst, was at least 10 times higher at the Pt/C catalyst than at the Ag/C catalyst. The behavior of both catalysts in methanol containing electrolyte was investigated and it was found that at a low methanol concentration, the Pt/C catalyst was quasi-tolerant to methanol. But, at a high methanol concentration, the ORR at a Pt/C was affected. However, the Pt/C catalyst showed in each case better activity towards ORR than the Ag/C catalyst, even if the latter one was less affected by the presence of methanol than the former one.  相似文献   

2.
Yan Liu  Wei Chao 《Electrochimica acta》2010,55(20):5617-5623
We report a new nanocomposite catalytic cathode composed of iron phthalocyanine, platinum, carbon black and Nafion® (FePc-Pt/C-Nafion®) which exhibited enhanced catalytic activity for the oxygen reduction reaction (ORR) in the presence of methanol compared with usual Pt/C based electrodes. The catalytic cathode was prepared by depositing Pt colloidal nanoparticles (dav = 2.2 nm) on a FePc/C support to form a FePc-Pt/C powder and ultrasonically treating a mixture of Nafion® and the FePc-Pt/C powder in ethanol, followed by loading the mixture on a glassy carbon electrode and drying at 120 °C. In an O2-saturated H2SO4 solution (0.5 M) with methanol (0.5 M), the onset potential (0.92 V vs RHE) over the FePc-Pt/C-Nafion® electrode shifted by more than 240 mV toward positive relative to that over an electrode prepared with a commercial Pt/C catalyst and Nafion®. A new kind of catalytic sites constructed by FePc nanocrystals and Pt nanoparticles was found in the FePc-Pt/C-Nafion® electrode for the first time, which exhibited higher specific activity for ORR than Pt as calculated based on the hydrogen desorption charge.  相似文献   

3.
We investigated the effect of CoSe2/C nanoparticle loading rate on oxygen reduction reaction (ORR) activity and H2O2 production using the rotating disk electrode and the rotating ring-disk electrode techniques. We prepared carbon-supported CoSe2 nanoparticles with different nominal loading rates and evaluated these samples by means of powder X-ray diffraction. All the catalysts had an OCP value of 0.81 V vs. RHE. H2O2 production during the ORR process decreased with an increase in catalytic layer thickness. This decrease was related to the CoSe2 loading on the disk electrode. H2O2 production also decreased with increasing catalytic site density, a phenomenon related to the CoSe2 loading rate on the carbon substrate. The cathodic current density significantly increased with increasing catalytic layer thickness, but decreased with increasing catalytic site density. In the case of 20 wt% CoSe2/C nanoparticles at 22 μg cm−2, we determined that the transfer process involves about 3.5 electrons.  相似文献   

4.
The performance of a Nafion 112 based proton exchange membrane (PEM) fuel cell was tested at a temperature range from 23 °C to 120 °C. The fuel cell polarization curves were divided into two different ranges based on current density, namely, <0.4 A/cm2 and >0.4 A/cm2, respectively. These two ranges were treated separately with respect to electrode kinetics and mass transfer. In the high current density range, a linear increase in membrane electrode assembly (MEA) power density with increasing temperature was observed, indicating the advantages of high temperature operation.Simulation based on electrode reaction kinetic theory, experimental polarization curves, and measured cathodic apparent exchange current densities all gave temperature dependent apparent exchange current densities. Both the calculated partial pressures of O2 and H2 gas in the feed streams and the measured electrochemical Pt surface areas (EPSAs) decrease with increasing temperature. They were also used to obtain the intrinsic exchange current densities. A monotonic increase of the intrinsic exchange current densities with increasing temperature in the range of 23-120 °C was observed, suggesting that increasing the temperature does promote intrinsic kinetics of fuel cell reactions.There are two sets of cathode apparent exchange current densities obtained, one set is for the low current density range, and the other is for the high current density range. The different values of cathode current densities in the two current density ranges can be attributed to the different states of the cathode Pt catalyst surface. In the low current density range, the cathode catalyst surface is a Pt/PtO, and in the high current density range, the catalyst surface becomes pure Pt.  相似文献   

5.
Kinetics of RuxMoySez nanoparticles dispersed on carbon powder was studied in 0.5 M H2SO4 electrolyte towards the oxygen reduction reaction (ORR) and as cathode catalysts for a proton exchange membrane fuel cell (PEMFC). RuxMoySez catalyst was synthesized by decarbonylation of transition-metal carbonyl compounds for 3 h in organic solvent. The powder was characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Catalyst is composed of uniform agglomerates of nanocrystalline particles with an estimated composition of Ru6Mo1Se3, embedded in an amorphous phase. The electrochemical activity was studied by rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. Tafel slopes for the ORR remain invariant with temperature at −0.116 V dec−1 with an increase of the charge transfer coefficient in dα/dT = 1.6 × 10−3, attributed to an entropy turnover contribution to the electrocatalytic reaction. The effect of temperature on the ORR kinetics was analyzed resulting in an apparent activation energy of 45.6 ± 0.5 kJ mol−1. The catalyst generates less than 2.5% hydrogen peroxide during oxygen reduction. The RuxMoySez nanoparticles dispersed on a carbon powder were tested as cathode electrocatalyst in a single fuel cell. The membrane-electrode assembly (MEA), included Nafion® 112 as polymer electrolyte membrane and commercial carbon supported Pt (10 wt%Pt/C-Etek) as anode catalyst. It was found that the maximum performance achieved for the electro-reduction of oxygen was with a loading of 1.0 mg cm−2 RuxMoySez 20 wt%/C, arriving to a power density of 240 mW cm−2 at 0.3 V and 80 °C.  相似文献   

6.
Tungsten and nickel tungsten carbides were evaluated as the anode catalysts of a polymer electrolyte fuel cell (PEFC). These catalysts were prepared by the temperature-programmed carburization of tungsten and nickel tungsten oxides from 573 to 873-1073 K in a stream of 20% CH4/H2 and kept at temperature for 3 h. The 30% tungsten and nickel tungsten carbides mixed with Ketjen carbon (KC) were evaluated by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and electrocatalytic activity (I-V performance) using a single cell. The W1023/KC catalyst achieved a power density of 6.4 mW/cm2 (current density: 15.2 mA/cm2) which corresponded to 5.7% of that achieved by a commercial 20% Pt/C catalyst in a single cell (20% Pt/C: 111.7 mW/cm2) using our setup. From the XRD data, α-W2C together with a small amount of WC was active during the anodic oxidation. The maximum power density of the 30 wt% 873 K-carburized NiW/KC was 8.2 mW/cm2 at the current density of 19.0 mA/cm2 which was 7.3% of the 20 wt% Pt/C.  相似文献   

7.
Micelle-encapsulated multi-walled carbon nanotubes (MWCNTs) with sodium dodecyl sulfate (SDS) were used as catalyst support to deposit platinum nanoparticles. High resolution transmission electron microscopy (HRTEM) images reveal the crystalline nature of Pt nanoparticles with a diameter of ∼4 nm on the surface of MWCNTs. A single proton exchange membrane fuel cell (PEMFC) with total catalyst loading of 0.2 mg Pt cm−2 (anode 0.1 and cathode 0.1 mg Pt cm−2, respectively) has been evaluated at 80 °C with H2 and O2 gases using Nafion-212 electrolyte. Pt/MWCNTs synthesized by using modified SDS-MWCNTs with high temperature treatment (250 °C) showed a peak power density of 950 mW cm−2. Accelerated durability evaluation was carried out by conducting 1500 potential cycles between 0.1 and 1.2 V with 50 mV s−1 scan rate, H2/N2 at 80 °C. The membrane electrode assembly (MEA) with Pt/MWCNTs showed superior performance stability with a power density degradation of only ∼30% compared to commercial Pt/C (70%) after potential cycles.  相似文献   

8.
Colloidal suspensions of almost spherical and crystalline Pt nanoparticles between 1.6 and 2.6 nm in diameter and with narrow size distribution were synthesized using the phase transfer method (PTM) with alkylamines, CnNH2, as stabilizing agents. Batches of such homogenous Pt-CnNH2 (n = 8, 12) nanocrystals were deposited onto Vulcan XC-72 carbon powder, and the activity for the oxygen reduction reaction (ORR) of this series of Pt/C materials was evaluated under PEMFC conditions. The aim was to elucidate whether this type of stabilized Pt nanoparticles were as active for the ORR as a corresponding commercial Pt/C material, and if any difference in mass activity could be observed between catalysts with different Pt particle size. In the PEMFC experiments, i.e. voltammetry in oxygen and nitrogen, it was found that, after an initial electrode activation, the ORR activity of the catalysts prepared from the alkylamine-stabilized Pt nanoparticles deposited on carbon was as high as that of the employed commercial reference catalyst. In fact, all samples in the Pt/C series showed high and very similar ORR activity normalized to Pt-loading, without significant dependence on the initial Pt particle size. However, pre- and post-electrochemical characterization of the Pt/C material series with TEM showed that structural changes of the Pt nanoparticles occurred during electrochemical evaluation. In all samples studied the mean Pt particle size increased during the electrochemical evaluation resulting in decreased differences between the samples explaining the observed similar ORR performance of the different materials. These results emphasize the necessity of post-operation characterization of fuel cell catalysts when discussing electrocatalytic activity. In addition, employing complex preparation efforts for lowering the Pt particle size below 3 nm may have limited practical value unless the particles are stabilized from electrochemical sintering.  相似文献   

9.
Cubic Pt nanoparticles were prepared from a solution of K2PtCl4 containing sodium polyacrylate as a capping reagent. The effects of the Pt/polymer molar ratio, the average molecular weight (Mw) of the polymer, and reaction temperature on the shape and size were investigated. When the polymer of Mw = 5100 was added at a molar ratio of Pt/polymer = 1/12, cubic platinum nanoparticles of an average size of 10.3 nm were predominantly formed (ca. 50% in number) at 25 °C. The electron diffraction pattern of the cubic nanoparticles revealed that they are single crystals with Pt {1 0 0} faces on the surface.The cubic nanoparticles were electrochemically active, and showed strong features of Pt {1 0 0} faces on cyclic voltammogram under argon atmosphere. After repeated potential cycling in the range 0.05-1.4 V, the features of Pt {1 0 0} were gradually lost, and changed to those of polycrystalline Pt. Rotating ring disk electrode measurements in O2-saturated H2SO4 solution revealed that the cubic nanoparticles had a high catalytic activity for oxygen reduction reaction (ORR). After polycrystallization by repeated potential cycling, the activity for ORR and hydrogen peroxide formation decreased slightly, which were attributed to the surface structural change from Pt {1 0 0} to polycrystalline.  相似文献   

10.
Nafion stabilized inks of Vulcan XC-72 supported platinum (20 wt.%) nanoparticles (Pt/XC-72) were utilized to produce electrocatalytic films on glassy carbon. The catalysts were modified (activated) with phosphododecatungstic acid H3PW12O40 (PW12). Comparison was made to bare (PW12-free) electrocatalytic films. Electroreduction of dioxygen was studied at 25 °C in 0.5 mol dm−3 H2SO4 electrolyte using rotating disk voltammetry. For the same loading of platinum (≈95 μg cm−2) and for the approximately identical distribution of the catalyst, the reduction of oxygen at a glassy carbon electrode modified with the ink containing PW12 proceeded at ca. 30-60 mV more positive potential (depending on the PW12 content), and the system was characterized by a higher kinetic parameter (rate of heterogeneous electron transfer), when compared to the PW12-free electrocatalyst. Gas diffusion electrodes with Pt/XC-72 supported on carbon paper (Pt loading 1 mg cm−2) were also tested. Under the same experimental conditions, while the exchange current density and the total resistance contribution to polarization components, computed from the galvanostatic polarization curves were found to be clearly higher and lower, respectively, for the ink modified with PW12 relative to the unmodified system. The results demonstrate that addition of heteropolytungstatic acid (together with Nafion) enhances the electrocatalytic activity of platinum towards reduction of oxygen.  相似文献   

11.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

12.
Z.D. Wei  L.L. Li  Z.T. Xia 《Electrochimica acta》2005,50(11):2279-2287
The research aims to increase the utilization of platinum (Pt) catalysts and thus to lower the catalyst loadings in the electrode for oxygen reduction reaction (ORR). The electrodeposition of Pt was performed on a rotation disk electrode (RDE) of glass carbon (GC), on which a layer of Nafion-bonded carbon of Vulcan XC 72R was dispersed in advance. The behaviors of Pt RDE and GC RDE in an aqueous solution containing HCl and H2PtCl6 were firstly studied. It was found that Pt deposition could be achieved if the electrode potential is controlled below −0.20 V versus (saturated-potassium-chloride silver chloride electrode) SSCE. However, quite a high overpotential is necessary if a quick and apparent deposition were required. Unfortunately, at a high overpotential, the hydrogen evolution would be unavoidable and even accelerated by the formation of nanometer size of Pt particles on the RDE. It was found that it is futile to increase platinum deposits just through extending the deposition time. It was also found that too large deposition current is not helpful for increase of platinum deposition because most of the current was consumed on hydrogen evolution in this case. It has been confirmed that it is conducive to richen Pt ions, present in the form of anionic complex in solution, onto the working electrode to be deposited. It is also helpful to eliminate the hydrogen bubbles formed on the working electrode, i.e., uncatalyzed carbon electrode (UCE), by imposing a positive current on the UCE for a length of time in advance of each cathodic deposition. The potential changes during deposition were recorded. Cyclic voltammograms (CV) of electrodes in 0.5 M H2SO4 before and after the deposition were used to assess loading of metal catalysts in a wide range of potential from −0.20 to 1.1 V versus SSCE. The results have shown that the performance of such an electrode with loadings estimated to be 50 μg Pt/cm2 is much better than those of a conventional electrode with loadings of 100 μg Pt/cm2.  相似文献   

13.
Novel electro-catalyst based on phthalocyanine stabilized Pt colloids has been developed for methanol electro-oxidation. Water soluble Cu2+ phthalocyanine functioned with sulfonic groups were selected as catalyst supports because of the relatively high catalytic activity of Pt catalyst and nearly the same catalytic selectivity complex with Cu-phthalocyanine, compared to others that chelated with Fe, Co and Ni ions. The as-resulting Pt-CuTsPc catalysts have average particle size of 2 nm and narrow size distribution. With the assistance of CuTsPc supports, the methanol electro-oxidation activity and poison tolerance of Pt catalyst have a significant increase. If/Ib ratio (anodic peak current density, forward to backward) of the Pt-CuTsPc/C catalysts also has obvious increase to 2.5, from value of 0.8 for pure Pt/C catalyst. The reaction Tafel slope of Pt-CuTsPc/C catalysts is 56.6 mV dec−1, much smaller than that of the Pt/C catalyst. The transient current density on Pt-CuTsPc/C at 0.60 V is enhanced to 650% of that on the Pt/C catalyst while the enhancement factor R for comparison of steady-state current obtained on Pt-CuTsPc/C and Pt/C catalyst varies between 111% and 534% in the potential region of 0.3-0.75 V.  相似文献   

14.
The electrochemical property of platinum loaded on activated carbon nanotubes (Pt/ACNTs) was investigated by cyclic voltammograms (CVs) recorded in H2SO4 and H2SO4/CH3OH aqueous solutions, respectively. Compared to 0.0046 A/cm2 of Pt-loaded on pristine carbon nanotubes (Pt/CNTs) with a SBET of 164 m2/g and 0.0042 A/cm2 of conventional carbon black (Pt/C, Vulcan XC-72) with a SBET of ∼250 m2/g, a better electrochemical activity (a high current density of 0.0070 A/cm2 for weak-H2 adsorption/desorption) of the Pt/ACNTs with high specific surface area (SBET) of 830-960 m2/g was obtained. Furthermore, the highest current density of 0.079 A/cm2 at 0.65 V in anodic sweep was observed during the methanol oxidation. On the basis of Pt size, utility ratio, and electro-active specific surface area (EAS), the Pt/ACNTs with a high Pt-loading of 50 wt.% exhibited the best electrochemical activity. The present ACNTs may be an excellent support material for electrochemical catalyst in proton exchange membrane and direct methanol fuel cells.  相似文献   

15.
The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaOx/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaOx/Pt surfaces. TaOx/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K2TaF7 (20 wt%) at 800 °C and then by annealing in air at various temperatures (200, 400 and 600 °C). The thus-fabricated TaOx/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (Hads/Hdes) reaction. The oxidation of Ta to the stoichiometric oxide (Ta2O5) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the Hads/Hdes reaction at TaOx/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 °C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaOx/Pt electrode is a diffusion-controlled process.  相似文献   

16.
The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm−2, respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction.  相似文献   

17.
SO2 poisoning of carbon-supported Pt3Co (Pt3Co/VC) catalyst is performed at the cathode of proton exchange membrane fuel cells (PEMFCs) in order to link previously reported results at the electrode/solution interface to the FC environment.First, the surface area of Pt3Co/VC catalyst is rigorously characterized by hydrogen adsorption, CO stripping voltammetry and underpotential deposition (upd) of copper adatoms. Then the performance of PEMFC cathodes employing 30 wt.% Pt3Co/VC and 50 wt.% Pt/VC catalysts is compared after exposure to 1 ppm SO2 in air for 3 h at constant cell voltage of 0.6 V. In agreement with results reported for the electrode/solution interface, the Pt3Co/VC is more susceptive to SO2 poisoning than Pt/VC at a given platinum loading.Both catalysts can be recovered from adsorbed sulfur species by running successive polarization curves in air or cyclic voltammetry (CV) in inert atmosphere. However, the activity of Pt3Co/VC having ∼3 times higher sulfur coverage is recovered more easily than Pt/VC. To understand the difference between the two catalysts in terms of activity recovery, platinum-sulfur interaction is probed by thermal programmed desorption at the catalyst/inert gas interface and CV at the electrode/solution interface and in the FC environment.  相似文献   

18.
The influence of poisoning of Pt catalyst by CO on the kinetics and mechanism of H2 oxidation reaction (HOR) at Pt/C electrode in 0.5 mol dm−3 HClO4, saturated with H2 containing 100 ppm CO, was examined with rotating disc electrode (RDE) at 22 °C. Commercial carbon black, Vulcan XC-72 was used as support, while Pt/C catalyst was prepared by modified polyol synthesis method in an ethylene glycol (EG) solution. The kinetically controlled current (Ik) for the HOR at Pt/C decreases significantly at CO coverage (ΘCO) > 0.6. For ΘCO < 0.6 the HOR takes place through Tafel-Volmer mechanism with Tafel reaction as rate-determining step at the low CO coverage, while Volmer step controls the overall reaction rate at the medium CO coverage. When CO coverage is higher then 0.6, Heyrovsky-Volmer mechanism is operative for the HOR with Heyrovsky as the rate-determining step (rds).  相似文献   

19.
The performances of gas diffusion electrodes (GDEs) containing Pt/C catalyst (48 wt.% and 68 wt.%-Pt) and sulfonated poly (arylene ether) (SPAE) ionomer (ion exchange capacity, IEC = 1.8 and 2.5 meq g−1) as a proton-conducting binder (SPAE-GDE) were examined in a PEFC at 80 °C and relative humidities (RH) from 60% to 100%. Based on our analyses in Part 1, we have succeeded in improving the cathode performance over the whole range of current densities examined by using a high Pt-loading for the catalyst (68 wt.%-Pt/C), in place of the previously used 48 wt.% one, for the reduction of thickness of the catalyst layer, which enabled us to increase the O2 gas diffusion rate and to suppress the adsorption of the SPAE binder on the Pt surface via an effective utilization of generated water. The performance, especially at low RH, was improved further by employing an SPAE binder with a lower IEC, 1.8 meq g−1 [SPAE(1.8)]. It was demonstrated by cyclic voltammetry that the specific adsorption of the sulfonate or organic moiety on the Pt surface was indeed suppressed for the case of SPAE(1.8). Hence, for the SPAE-GDEs, the use of a high Pt-loading catalyst, together with a binder with an appropriate IEC, is very important.  相似文献   

20.
Platinum (Pt) catalytic electrode was developed by using carbon nanotube films (buckypaper) as supporting medium and electrodeposition method to deposit Pt catalyst. Buckypapers are free-standing thin films consisting of single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and/or carbon nanofibers (CNFs) held together by van der Waals forces without any chemical binders. Special mixed buckypapers was developed by layered microstructures with a dense and high-conducting SWNT networks at the surface, as well as large porous structures of CNF networks as back supports. This unique microstructure can lead to improve Pt catalyst accessibility and mass exchange properties. Pt particles of about 6 nm were uniformly deposited in porous buckypapers. A promising electrochemical surface area of ∼40 m2/g was obtained from these electrodes. A Pt utilization as low as 0.28 gPt/kW was achieved for the cathode electrode at 80 °C. Pt utilization efficiency can be further improved by optimization of the electrodeposition condition in order to reduce the Pt particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号