首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
CFD simulation of hydrodynamics of gas-liquid-solid fluidised bed reactor   总被引:4,自引:0,他引:4  
A three dimensional transient model is developed to simulate the local hydrodynamics of a gas-liquid-solid three-phase fluidised bed reactor using the computational fluid dynamics (CFD) method. The CFD simulation predictions are compared with the experimental data of Kiared et al. [1999. Mean and turbulent particle velocity in the fully developed region of a three-phase fluidized bed. Chemical Engineering & Technology 22, 683-689] for solid phase hydrodynamics in terms of mean and turbulent velocities and with the results of Yu and Kim [1988. Bubble characteristics in the racial direction of three-phase fludised beds. A.I.Ch.E. Journal 34, 2069-2072; 2001. Bubble-wake model for radial velocity profiles of liquid and solid phases in three-phase fluidised beds. Industrial and Engineering Chemistry Research 40, 4463-4469] for the gas and liquid phase hydrodynamics in terms of phase velocities and holdup. The flow field predicted by CFD simulation shows a good agreement with the experimental data. From the validated CFD model, the computation of the solid mass balance and various energy flows in fluidised bed reactors are carried out. The influence of different interphase drag models for gas-liquid interaction on gas holdup are studied in this work.  相似文献   

2.
以带冷却盘管的大型高温费托流化床反应器为研究对象,开展三维计算流体力学模拟研究。传统双流体模型基于局部平均的假设,认为单位控制体内气固两相均匀分布,网格尺寸必须足够小才能正确揭示局部非均匀结构的所有细节。采用双流体模型模拟大型工业化流化床装置时,将导致网格数量过于庞大,远超现有计算能力。为提高计算效率的同时不损失模拟精度,提出了基于局部非均匀假设、适用于粗网格的拟泡-乳三相非均匀曳力(PBTD)模型。该模型将流化床分为乳化相气体、乳化相颗粒以及气泡三相,分别建立守恒方程,体现气泡的非均匀特性对气固曳力的影响。乳化相内气固曳力以及气泡相与乳化相内颗粒的曳力分开考虑。采用PBTD模型耦合传质和反应模型,建立基于局部非均匀假设的高温费托合成反应器三维流动-传递-反应模型,包括各相守恒控制方程、气泡尺寸模型、相间物质和动量交换模型、高温费托合成反应动力学模型以及初始和边界条件,预测反应器内的流场和组分浓度分布。研究结果表明:在粗网格条件下,非均匀曳力模型可以预测床层内相含率的分布情况,预测的床层膨胀高度与经验公式计算值接近,偏差为1.2%。反应器出口气体组分的质量分数与试验测量值相近,偏差在1.5%~16.0%。模拟结果证实,基于非均匀假设的PBTD模型适用于模拟工业规模的鼓泡流化床反应器,对其设计开发和工业运行具有指导价值。  相似文献   

3.
The hydrodynamics and heat transfer of a gas-solid fluidized bed chamber was investigated by computational fluid dynamic (CFD) techniques. A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this chamber. For momentum exchange coefficients, Syamlal-O’Brien drag functions were used. A suitable numerical method that employed finite volume method was applied to discretize the equations. The simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Also, the solid particle temperature effect on heat transfer and hydrodynamics was studied. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops and mean gas temperature predicted by the simulations at different positions in the chamber were in good agreement with experimental measurements at gas velocities higher than the minimum fluidization velocity. Furthermore, this comparison showed that the model could predict hydrodynamics and heat transfer behaviors of gas solid fluidized bed reasonably well.  相似文献   

4.
The effect of inclination angle of a packed bed on its corresponding gas–liquid flow segregation and liquid saturation spatial distribution was measured in co‐current descending gas–liquid flows for varying inclinations and fluid velocities, and simulated using a two‐phase Eulerian computational fluid dynamics framework (CFD) adapted from trickle‐bed vertical configuration and based on the porous media concept. The model predictions were validated with our own experimental data obtained using electrical capacitance tomography. This preliminary attempt to forecast the hydrodynamics in inclined packed bed geometries recommends for the formulation of appropriate drag force closures which should be integrated in the CFD model for improved quantitative estimation.  相似文献   

5.
Effect of operating pressure on the hydrodynamics of agglomerating gas–solid fluidised bed was investigated using a combination of discrete element method (DEM) for describing the movement of particles and computational fluid dynamic (CFD) for describing the flow of the gas phase. The inter‐particle cohesive force was calculated based on a time dependent model developed for solid bridging by the viscous flow. Motion of agglomerates was described by the multi‐sphere method. Fluidisation behaviour of an agglomerating bed was successfully simulated in terms of increasing the size of agglomerates. The results showed that increasing the operating pressure postpones de‐fluidisation of the bed. Since the DEM approach is a particle level simulation and study about particle–particle interactions is possible, a micro‐scale investigation in terms of cohesive force and repulsive force during agglomeration at elevated pressures was done. The micro‐scale results showed that although the number of contacts between particles was decreased by increasing operating pressure, stronger solid bridge formed between colliding particles at higher pressures. © 2012 Canadian Society for Chemical Engineering  相似文献   

6.
7.
An integrated flow model was developed to simulate the fluidization hydrodynamics in a new bubble-driven gas–liquid–solid fluidized bed using the computational fluid dynamic (CFD) method. The results showed that axial solids holdup is affected by grid size, bubble diameter, and the interphase drag models used in the simulation. Good agreements with experimental data could be obtained by adopting the following parameters: 5 mm grid, 1.2 mm bubble diameter, the Tomiyama gas–liquid model, the Schiller–Naumann liquid–solid model, and the Gidaspow gas–solid model. At full fluidization state, an internal circulation of particles flowing upward near the wall and downward in the centre is observed, which is in the opposite direction compared with the traditional core-annular flow structure in a gas–solid fluidized bed. The simulated results are very sensitive to bubble diameters. Using smaller bubble diameters would lead to excessive liquid bed expansions and more solid accumulated at the bottom due to a bigger gas–liquid drag force, while bigger bubble diameters would result in a higher solid bed height caused by a smaller gas–solid drag force. Considering the actual bubble distribution, population balance model (PBM) is employed to characterize the coalescence and break up of bubbles. The calculated bubble diameters grow up from 2–4 mm at the bottom to 5–10 mm at the upper section of the bed, which are comparable to those observed in experiments. The simulation results could provide valuable information for the design and optimization of this new type of fluidized system.  相似文献   

8.
气相聚合过程以流化床为核心反应器,其混合、传递和化学反应过程规律对工艺研发具有指导意义。计算流体力学是一种模拟流体流动的方法,可节省大量人力和物力并提供更全面的反应过程信息,在气固流态化领域得到广泛应用。基于计算流体力学的流态化模拟的难点在于如何建立能够恰当描述颗粒团聚过程的曳力模型,关于热量传递甚至聚合反应过程的模拟工作都是基于此发生的。随着计算机运算能力的提高,研究工业尺度的流化床反应器以及由粒径分布而带来的传递过程的影响可能成为模型广度及深度发展的方向。  相似文献   

9.
Based on a slit model, a pellet scale model has been developed for calculation of drag force imposed on trilobe catalyst particles in a packed bed reactor. The drag coefficient for single gas phase flow in a porous media has been calculated by CFD simulation and the results compared to the Ergun equation. The results show that the drag coefficient predicted by Ergun equation should be modified for various bed porosities, particle aspect ratio and gas densities. Therefore, a correction factor has been proposed to correct the Ergun equation constants in various conditions for trilobe particles. Comparison between the proposed corrected Ergun equation results and experimental data indicates considerable agreement.  相似文献   

10.
The numerical simulations and experimental data of bed hydrodynamics in a conical fluidized bed unit are compared. Experimental studies have been carried out in a bed containing TiO2 particles belonging to A/C boundary of Geldart's classification with a wide particle‐size distribution. Thus, pressure measurements and an optical fiber technique allowed determining the effect of static bed height on the fluidization characteristics of micronic particles. Numerical simulations have then been performed to evaluate the sensitivity of gas‐solids drag models. The Eulerian multiphase model has been used with different drag models and three boundary conditions (BC) consisting of no‐slip, partial‐slip, and free‐slip. The numerical predictions using the Gidaspow drag model and partial‐slip BC agreed reasonably well with the experimental bed pressure drop measurements. The simulation results obtained for bed expansion ratio show that the Gidaspow model with the free‐slip BC best fit with the experimental data. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

11.
An experimental and computational study is presented on the hydrodynamic characteristics of FCC particles in a turbulent fluidized bed. Based on the Eulerian/Eulerian model, a computational fluid dynamics (CFD) model incorporating a modified gas‐solid drag model has been presented, and the model parameters are examined by using a commercial CFD software package (FLUENT 6.2.16). Relative to other drag models, the modified one gives a reasonable hydrodynamic prediction in comparison with experimental data. The hydrodynamics show more sensitive to the coefficient of restitution than to the flow models and kinetics theories. Experimental and numerical results indicate that there exist two different coexisting regions in the turbulent fluidized bed: a bottom dense, bubbling region and a dilute, dispersed flow region. At low‐gas velocity, solid‐volume fractions show high near the wall region, and low in the center of the bed. Increasing gas velocity aggravates the turbulent disorder in the turbulent fluidized bed, resulting in an irregularity of the radial particle concentration profile. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
A multi-fluid Eularian CFD model with closure relationships according to the kinetic theory of granular flow has been applied to study the motions of particles in the gas bubbling fluidized bed with the binary mixtures. The mutual interactions between the gas and particles and the collisions among particles were taken into account. Simulated results shown that the hydrodynamics of gas bubbling fluidized bed related with the distribution of particle sizes and the amount of energy dissipated in particle-particle interaction. In order to obtain realistic bed dynamics from fundamental hydrodynamic models, it is important to correctly take the effect of particle size distribution and energy dissipation due to non-ideal particle-particle interactions into account.  相似文献   

13.
The simultaneous effect of particle size and concentration on the total gas holdup of slurry bubble column reactors was investigated in this work. The total gas holdup was measured for air–water–glass beads systems. Three solid concentrations and three particle diameters were used. It was found that increasing particle size at high constant concentration decreases gas holdup. Moreover, increasing solid concentration decreases gas holdup and this decreasing effect is higher for larger particles. Also, solid particles have two effects on hydrodynamics, namely, changing the viscosity and density of the liquid phase as well as hindering the bubbles from rising within the column by the collision phenomenon. Therefore, a novel correcting factor was introduced to correct the gas holdup. The hindering factor considers both the collision efficiency affected by the particle size as well as the solid concentration. A novel correlation was developed to predict the experimental data of the three-phase gas holdup.  相似文献   

14.
Particle‐resolved direct numerical simulations (PR‐DNS) of a simplified experimental shallow fluidized bed and a laboratory bubbling fluidized bed are performed by using immersed boundary method coupled with a soft‐sphere model. Detailed information on gas flow and individual particles’ motion are obtained and analyzed to study the gas–solid dynamics. For the shallow bed, the successful predictions of particle coherent oscillation and bed expansion and contraction indicate all scales of motion in the flow are well captured by the PD‐DNS. For the bubbling bed, the PR‐DNS predicted time averaged particle velocities show a better agreement with experimental measurements than those of the computational fluid dynamics coupled with discrete element models (CFD‐DEM), which further validates the predictive capability of the developed PR‐DNS. Analysis of the PR‐DNS drag force shows that the prevailing CFD‐DEM drag correlations underestimate the particle drag force in fluidized beds. The particle mobility effect on drag correlation needs further investigation. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1917–1932, 2016  相似文献   

15.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

16.
A multi‐fluid Eulerian model incorporating the kinetic theory of granular flow is used for the simulation of bubbling fluidized beds containing a binary mixture of Geldart B particles at low gas velocities. The cases of density, size and combined density/size segregation are investigated using computational fluid dynamic simulations. Various expressions for the drag force are evaluated for predicting different segregations. The simulation results show that summation of the particle‐particle drag force, i.e., the “hindrance effect” term, and the Stokes drag of particles, which is modified based on the Wen‐Yu drag model can be used for accurate simulation of a binary mixture of particles differing in size, density, or both. Bed expansion and dimensionless axial segregation profiles of CFD results are compared with the experimental data and good agreement is found.  相似文献   

17.
Although the use of computational fluid dynamics (CFD) model coupled with population balance (CFD‐PBM) is becoming a common approach for simulating gas–solid flows in polydisperse fluidized bed polymerization reactors, a number of issues still remain. One major issue is the absence of modeling the growth of a single polymeric particle. In this work a polymeric multilayer model (PMLM) was applied to describe the growth of a single particle under the intraparticle transfer limitations. The PMLM was solved together with a PBM (i.e. PBM‐PMLM) to predict the dynamic evolution of particle size distribution (PSD). In addition, a CFD model based on the Eulerian‐Eulerian two‐fluid model, coupled with PBM‐PMLM (CFD‐PBM‐PMLM), has been implemented to describe the gas–solid flow field in fluidized bed polymerization reactors. The CFD‐PBM‐PMLM model has been validated by comparing simulation results with some classical experimental data. Five cases including fluid dynamics coupled purely continuous PSD, pure particle growth, pure particle aggregation, pure particle breakage, and flow dynamics coupled with all the above factors were carried out to examine the model. The results showed that the CFD‐PBM‐PMLM model describes well the behavior of the gas–solid flow fields in polydisperse fluidized bed polymerization reactors. The results also showed that the intraparticle mass transfer limitation is an important factor in affecting the reactor flow fields. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1717–1732, 2012  相似文献   

18.
The sensitivity study of bubbly flow in an internal airlift loop reactor is presented using a steady Reynolds averaging two‐fluid model. Comparative evaluation of different drag formulations, drag coefficient correlations, turbulence effect on the drag coefficient, outlet slip velocity, and bubble size is performed and the respective influence to the simulation results is highlighted. It is found that a complicated drag formulation may not result in reliable predictions. All the drag coefficient correlations underpredict the gas holdup if the influence of turbulence on the drag coefficient is not well incorporated. Fortunately, the global hydrodynamics is not sensitive to the outflow slip velocity for a wide range, so a steady two‐fluid model can be used to simulate the bubbly flow when the flow field is fully developed. The correct estimation of bubble size with properly selected correlations play an important role in successful simulation of gas‐liquid bubbly flow in airlift loop reactors.  相似文献   

19.
The effects of sound assistance on fluidization behaviors were systematically investigated in a gas–solid acoustic fluidized bed. A model modified from Syamlal–O'Brien drag model was established. The original solid momentum equation was developed and an acoustic model was also proposed. The radial particle volume fraction, axial root‐mean‐square of bed pressure drop, granular temperature, and particle velocity in gas–solid acoustic fluidized bed were simulated using computational fluid dynamics (CFD) code Fluent 6.2. The results showed that radial particle volume fraction increased using modified drag model compared with that using the original one. Radial particle volume fraction was revealed as a parabolic concentration profile. Axial particle volume fraction decreased with the increasing bed height. The granular temperature increased with increasing sound pressure level. It showed that simulation values using CFD code Fluent 6.2 were in agreement with the experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

20.
In the fluidized bed gas phase polymerization of polyethylene (PE), the heat generated by the exothermic polymerization process is dissipated into the gas mixture flowing past the polymer particles. The polymer particle temperature is determined by the extent of convective heat transfer and other mechanisms of heat removal. In addition to the heat removal by convective heat transfer, liquid hydrocarbon (HC) is often injected into the reactor to further remove heat by evaporation but without partaking in the reaction. The effects of adding this liquid HC on the particle surface temperature have been investigated numerically by means of a one-dimensional polar model. Results indicate that the primary mechanism for removal of the heat of polymerization from the particles is by means of convective heat transfer to the bulk gas, which amounts to 99.5% removal of total heat of polymerization. The PE particle temperature rises only by 1–2°C above the surrounding bed gas mixture. The addition of liquid HC to the feed, however, has a pronounced effect on controlling the reactor gas temperature as most of this liquid is evaporated to the gaseous phase before it reaches the polymer particles. To state it clearly, heat of polymerization is transferred from the particles to the reactor bulk gas predominantly by convection, and part of this heat is subsequently absorbed by evaporation of the fresh liquid HC in the feed. Comparison with a detailed computational fluid dynamic (CFD) model of polymerization in a generic gas phase reactor has also been conducted. The results confirm that the particle temperature rise above the reactor gas temperature is consistent with the one-dimensional model. However, local gas temperature variations are present in the reactor due to the unsteady gas-solid hydrodynamics. Hence, there are some zones that are a few degrees hotter/colder than the bulk reactor temperature with corresponding increase/decrease in particle temperature in these zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号