首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
A new meandered‐line inductor fed wideband circularly polarized rectangular dielectric resonator antenna (DRA) with partial ground plane has been developed in this work. Meandered‐line inductor feed and partial ground plane are used for generation of orthogonal modes, hence circular polarization (CP) in DRA. By controlling the length of meandered‐line inductor, three different CP DRA have been designed for different wireless applications such as Wi‐MAX and WLAN/ISM 2400 band. Distribution of electric field inside rectangular DRA shows that all three antenna having TE11δ mode. Finally, a lower frequency band application at 2.4 GHz (ISM) called here as Proposed Antenna, has been considered for fabrication. This designed antenna shows measured ?10 dB input impedance bandwidth of 20.67% and 3‐dB axial ratio bandwidth of 27.95% in broadside direction. All these three CP antennas (Antenna‐1 to Proposed Antenna) are showing stable gain and right hand circular polarization in broadside direction.  相似文献   

2.
In this article, we investigate an optically transparent broadband water antenna, which is composed of a cross‐shaped slot feeding structure and a thin layer of water supported by a transparent dielectric slab. This water antenna can be analyzed as an embedded stacked dielectric resonator (DR) antenna (DRA) mounted on a ground plane. Two distinct resonator modes—namely, DRA mode and dielectric‐loaded slot (DLS) mode—are excited to achieve a good impendence matching over a very wide frequency range. A prototype antenna is designed, fabricated, and measured. Measured results demonstrate that the designed water antenna exhibits a broad impedance bandwidth of about 37% from 1.07 to 1.56 GHz with antenna efficiency better than 65% and broadside radiation characteristics with low cross‐polarizations.  相似文献   

3.
In this communication a 2 × 2 dielectric resonator antenna (DRA) array is proposed with a wideband frequency response. An air bridgeless coplanar waveguide (CPW) power divider network is first time used to feed the 2 × 2 DRA array. Four rectangular DRAs are used as array element and exited in TE111 mode by four slots at the end of the CPW lines in the feed network. The straight CPW phase delay line in feed network is further meandered resulting an enhanced radiation performance. The proposed DRA array exhibits a wideband response with an impedance bandwidth of 16% while maintaining a stable broadside radiation pattern with the gain range from 8 to 9.4 dBi. The proposed design is fabricated and measured, reaching good agreement with simulation results.  相似文献   

4.
In this article, a novel dual‐band circularly polarized (CP) dielectric resonator antenna (DRA) for millimeter‐wave (MMW) band is presented. The rectangular dielectric resonator with layered truncated corners is excited by a microstrip‐coupled cross‐slot. CP radiations in the lower band are realized by utilizing two quasi‐TE111 modes operating at 21.7 GHz and 23.8 GHz, while CP radiations in the upper band are obtained by exciting a quasi‐TE113 mode at 28.2 GHz. The dual‐band DRA is fabricated and measured. Due to the higher order mode, the average gain of the DRA in the upper band is about 3 dB higher than that in the lower band. The measured impedance bandwidths (|S11| < ?10 dB) are 17.0% (20.5‐24.3 GHz) and 15.2% (26.1‐30.4 GHz), while the measured axial ratio (AR) bandwidths (AR < 3 dB) are 12.8% (21.2‐24.1 GHz) and 5% (27.4‐28.8 GHz). In addition, the peak gain values are 5 and 8 dBic.  相似文献   

5.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   

6.
A wideband circularly polarized (CP) dielectric resonator antenna (DRA) loaded with the partially reflective surface for gain enhancement is presented in this article. First, the DRA is excited by a microstrip line through modified stepped ring cross‐slot to generate the circular polarization. Four modified parasitic metallic plates are sequentially placed around the DRA for greatly widening the axial‐ratio bandwidth. Then, a partially reflective surface is introduced for enhancing the gain performance and further improving the CP bandwidth as well. Finally, an optimized prototype is fabricated to verify the design concept. The measured results show that the proposed DRA achieves 54.3% impedance bandwidth (VSWR<2) and 54.9% 3‐dB AR bandwidth. Besides, its average and peak gains are 10.7 dBic and 14.2 dBic, respectively. Wide CP band and high gains make the proposed DRA especially attractive for some broadband wireless applications such as satellite communication and remote sensing.  相似文献   

7.
This paper presents a wideband circularly polarized broadside radiation characteristics by using stacked rectangular dielectric resonator antenna (DRA) with different volumes. In this designed antenna, the wide input impedance‐ and axial ratio (AR)‐bandwidths come from three factors: stacked rectangular DR with different volumes, stepped‐shaped conformal strip associated with microstrip line as a feed and different type of partial ground plane. Here, the orthogonal TExδ11 and TEy1δ1 modes have been responsible for the generation of CP radiation in stacked rectangular DRA. Measured results show that the proposed stacked rectangular DRA with different volumes achieves input impedance bandwidth of 54.84% while AR bandwidth has been found to be 11.53%. The proposed antenna provides broadside right‐handed CP radiation pattern with gain ranges from 2.27–5.80 dBic and offers an average radiation efficiency of 89.48%, across the entire working bandwidth, respectively. Therefore, this antenna is very much useful for the ISM 2400 band applications.  相似文献   

8.
This communication explains the designing of two‐port based hybrid radiator for multiple‐input‐multiple‐output (MIMO) applications. Hybrid radiator includes U‐shaped printed line and ring dielectric resonator antenna (ri‐DRA). Wideband characteristics have been achieved by exciting both the U‐shaped printed line along with ri‐DRA. The U‐shaped metallic line acts as a magnetic dipole and helps to excite fundamental hybrid mode (HE11δ) in the ri‐DRA. Dual L‐shaped and a rectangular defect have been created in ground plane for achieving wideband isolation over the working frequency band. Optimized Scattering parameters and far‐field results are verified by fabricating and testing of antenna prototype. Experimental outcomes confirm that the proposed MIMO antenna gives wider impedance bandwidth (80%), improved port isolation (better than 18 dB), stable gain (~ 4 dB), and radiation pattern. Various MIMO performance factors are analyzed and instituted in the tolerable boundaries.  相似文献   

9.
A dual‐port multiple‐input multiple‐output (MIMO) dielectric resonator antenna (DRA) for 5 GHz IEEE (802.11a/h/j/n/ac/ax) is discussed in this article. Two prototypes of single feed DRA and dual feed MIMO DRA are fabricated and measured results are compared with the simulated data. The proposed single feed DRA and dual feed MIMO DRA exhibits wide impedance bandwidth (IBW). Antennas have been fabricated on Rogers RT Duroid substrate with Eccostock made DRA placed over the substrate. DRAs are excited by aperture coupled feed to achieve wide bandwidth and high efficiency. The measured IBW of uniport DRA and dual‐port MIMO DRA are 26.6% (4.75‐6.21 GHz) and 27.5% (4.7‐6.2 GHz) respectively. Maximum gain of the antenna is 7.4 dBi. The results of the antennas are in good agreement with simulated data and they are suitable for WLAN applications. These antennas are also compact with area of substrate 32.8 cm2.  相似文献   

10.
This article presents a new dual C‐shaped rectangular dielectric resonator (DR) based antenna for generation of wideband circularly polarized (CP) radiation. The proposed antenna comprises of a pair of C‐shaped rectangular dielectric DR and a metal strip with a coaxial probe. By utilization of a metal strip at the side surface of C‐shaped rectangular DR, the wideband CP radiation is achieved from the proposed dielectric resonator antenna (DRA). Fundamental orthogonal modes (TExδ11 and TEy1δ1) are excited using the rectangular DRA with a metal strip for the generation of CP fields. The proposed antenna with dual C‐shaped rectangular CP DRA provides the measured ?10 dB reflection coefficient bandwidth of 30.07% (3.22 GHz‐4.36 GHz) with measured 3‐dB axial ratio bandwidth of 14.81% (3.25 GHz‐3.77 GHz) at the boresight. The proposed antenna covers the useful Wi‐MAX band.  相似文献   

11.
In this paper, two Dielectric Resonator Antenna (DRA) models fed through a pair of diagonally coupled asymmetric L‐slots are incorporated on the ground plane of size 44 X 44 mm2 with a strip line feed underneath the substrate are presented. The proposed DRA‐1 is a triband antenna, resonates at 5.2GHz, 6.7GHz and 9.85GHz with a gain of 5.6dBi, 5.66dBi and 9.8dBi respectively. The bandwidth offered at Circularly Polarized (CP) band by DRA‐1 is 1.95 GHz (6‐7.95 GHz). The proposed second model DRA‐2 operates at 5 GHz, 6.4 GHz, 7.8 GHz and 10.3 GHz with a peak gain of 5.5dBi, 5dBi, 6.1dBi and 7.8dBi respectively. The quad‐band DRA‐2 offers two CP bands with bandwidths of 1.3GHz (7‐8.3 GHz) and 1.2 GHz (9.8‐11 GHz). The multiple operating bands of the proposed DRAs are appropriate for different wireless applications such as WLAN, C‐Band and X‐Band range of frequencies.  相似文献   

12.
This article outlines a compressive review on investigation carried out targeting to gain, circular polarization (CP), and mutual coupling reduction in dielectric resonator antenna (DRA). The DRA has already been created a separate position in antenna engineering domain because of its adept characteristics, such as wide bandwidth, high efficiency, low‐loss, and mainly 3D‐design flexibility which is rarely available in conventional antennas. In this context, the research on gain, circular polarization, and mutual coupling are quite interesting and being carried out from the last two decades. The ultimate aim of this article is to (i) give an overview of different techniques adopted in context to gain, CP, and mutual coupling reduction; (ii) give a compressive review of notable research carried out targeting to these three characteristics; and (iii) find out the research gap concentration for furtherance of the same.  相似文献   

13.
A dual‐port reduced size multiple input multiple output (MIMO) Dielectric Resonator Antenna (DRA) has been studied and proposed. The MIMO antenna consists of a Rectangular Dielectric Resonator antenna, which is fed by two symmetrical feed lines for orthogonal mode excitation. The proposed antenna is suitable for operation over various long term evolution (LTE) bands. A measured bandwidth of 264 MHz for |S11| S‐parameters. Based on these results, it can be concluded that the proposed antenna can be a suitable candidate for MIMO applications. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:495–501, 2015.  相似文献   

14.
In this article, a new radiating stub microstrip feed has been investigated with asymmetrical ground plane for generation of circular polarization (CP) in a dielectric resonator antenna (DRA). Here, asymmetrical ground plane and 3 radiating stubs with microstrip feed line are used for generation of 2 different modes namely TE11δ and TE12δ in rectangular DRA. By using mode matching concepts, these modes are responsible for enhancing the impedance bandwidth (TE12δ ie, and ) and axial ratio (AR) bandwidth (TE11δ ie, and ) in proposed antenna. Designed antenna offers measured input impedance bandwidth (|S11| < ?10 dB) and AR bandwidth (AR < 3‐dB) of 44.78%, ranging from 4.6 to 6.9 GHz and 23.32%, ranging from 4.6 to 6.9 GHz, respectively. It has been observed that proposed antenna shows left‐handed CP fields in boresight direction with average gain of 3.15 dBic and radiation efficiency of 90.54%. Designed antenna is suitable for Wi‐MAX (3.3‐3.7 GHz) applications.  相似文献   

15.
In this article, compact ring‐shaped dielectric resonator antenna (DRA) along with moon‐shaped defected ground structure (DGS) was studied. The proposed antenna was fed by microstrip line shifted from center position, which excited TE01δ mode in ring DRA. Moon‐shaped DGS was acting as a radiator and also reduced the size of proposed antenna by an amount of 14.87% (lower frequency band) and 48.77% (upper frequency band). The proposed antenna was designed to resonate at two different frequencies namely 2.24 and 5.82 GHz with a fractional bandwidth of 30.17% and 22.14%, respectively. Based on optimized design parameters, archetype of antenna structure has been constructed and measured successfully, which shows good agreement with simulated ones. The proposed antenna design was suitable for WLAN (2.4/5.2/5.8 GHz); WiMAX (2.5/5.5 GHz); AMSAT (5.6/5.8 GHz); and WAVE (5.9 GHz) bands. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:503–511, 2016.  相似文献   

16.
In this article, low temperature cofired ceramic (LTCC) technology was used to realize the quarter of wavelength helical antenna instead of the quarter of wavelength monopole for achieving minimization of ceramic chip antenna (13 mm × 5.25 mm × 1.2 mm). The equivalent circuit of the helix‐monopoles combination of chip antenna has been established successfully. Using circuit simulation on the equivalent circuit model we proposed, two extra parasitic monopole antennas were added into helix antenna to enhance the second mode bandwidth because of the presence of these two close modes. The measured performance of the dual band LTCC chip antenna with helix‐three monopoles has been successfully predicted by using circuit simulation instead of EM simulation. The first and the second modes bandwidth of the dual band chip antenna can be achieved to 95 MHz (880–975 MHz) (meeting GSM band) and 300MHz (covering DCS and PCS band), respectively. The measured peak gains of this ceramic chip antenna are approximately ?1.8 dB in low band and 0.6 dB in high band based on the 120 × 40 mm2 ground size. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

17.
The main objective of the present article is to improve the bandwidth of a low profile Cylindrical Dielectric Resonator Antenna (CDRA) and operate it for WLAN and “C” band applications. An inverted umbrella shaped CDRA excited by a microstrip feedline with single stub is proposed here. Efficient coupling has been achieved by means of a single stub microstrip feed between DRA and the feed. The new shape of DRA and a single stub microstrip feed improves the bandwidth significantly as high as 28% from 5 to 6.67 GHz which is quite useful for both WLAN and “C” band applications. The proposed antenna is simple in construction, easy to fabricate, low profile and thickness of CDRA is only 5 mm. A parametric study is performed using Ansoft HFSS simulation software to optimize the antenna performance. The proposed CDRA is fabricated and the characteristics of the antenna are measured.  相似文献   

18.
This letter investigates an integrated antenna configuration for WLAN/WiMAX applications. The proposed composite antenna configuration is simply the grouping of ring dielectric resonator along with reformed square‐shaped slot antenna. Three significant characteristics of proposed article are: (1) aperture act as magnetic dipole and excite HE11δ mode in ring dielectric resonator antenna; (2) reforming of square aperture generates orthogonal modes in ring DRA and creates CP in lower frequency band; (3) annular‐shaped Microstrip line along with reformed square aperture creates CP wave in upper frequency band. With the purpose of certifying the simulated outcomes, prototype of proposed structure is fabricated and tested. Good settlement is to be got between experimental and software generated outcome. Experimental outcomes show that the proposed radiating structure is operating over 2 frequency bands that is, 2.88‐3.72 and 5.4‐5.95 GHz. Measured 3‐dB axial ratio bandwidth in lower and upper frequency band is approximately 9.52% (3.0‐3.4 GHz) and 5.85% (5.64‐5.98 GHz), respectively. These outcomes indicate that the proposed composite antenna structure is appropriate for WLAN and WiMAX applications.  相似文献   

19.
In this article, a new modified cross‐shaped coupled cubical dielectric resonator antenna (DRA) has been investigated for dual‐band dual‐polarized applications. The linearly polarized (LP) fields in DRA has been generated by using a single slot in the ground plane and kept at either 45° (SL1) or ?45° (SL2) from the microstrip feed line. Combining these two slots (SL1 and SL2) in the modified ground plane, the proposed structure able to generate circularly polarized (CP) field in DRA. But the generated CP field is not enough to cover ISM 2400 band. To achieve CP in ISM 2400 band, an extra slot (SL3) to the existing slots and an extra strip (ST) in the circular ring feed line have been included. This modified final antenna arrangement has been able to produce LP (due to loading effect, ie, slot and DRA) and CP fields (orthogonal modes have been generated, ie, TE x111 and TE y111), simultaneously. The measured CP and LP, ?10 dB impedance bandwidths are 11.85% (2.38‐2.68 GHz) and 9.11% (3.25‐3.56 GHz) in combination with the 3‐dB axial ratio bandwidth of 4.11% (2.38‐2.48 GHz). The generated CP and LP fields are used for different wireless communication bands such as ISM 2400 and Wi‐MAX (3.3‐3.7 GHz) bands.  相似文献   

20.
In this article, a new A‐shaped dielectric resonator antenna (DRA) excited by a conformal strip is proposed for wideband applications. The wide bandwidth is achieved by combining two adjacent modes that is, TM101 and TM103. The experimental results demonstrate that the proposed DRA offers an impedance bandwidth (for S11?10 dB) of 59.7% (3.24‐6.0 GHz), covering IEEE 802.11 and U‐NII bands. The antenna provides a fairly stable radiation pattern with the gain ranging from 5.29 to 7 dBi across the operating bandwidth. A dual‐element multiple‐input multiple‐output (MIMO) system is also realized using the proposed wideband DRA. The impedance bandwidth of the dual‐element MIMO antenna is 59.2% and 60.9% for Port1 and Port2, respectively and the isolation between the ports is better than 20 dB across the bandwidth. For Port1, the gain of the MIMO antenna ranging from 6.03 to 7.45 dBi is obtained across the bandwidth. Furthermore, the diversity performance of the MIMO antenna is found to be good with envelope correlation coefficient below 0.003 over the operating band. The proposed antenna could be the potential candidate for worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN) and lower European UWB frequency band (3.4‐5.0 GHz) applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号