首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current work aims to develop a reliable theoretical model capable of simulating the depletion process of urea‐water‐solution (UWS) droplets injected in a hot exhaust stream as experienced in an automotive urea‐based selective catalytic reduction system. A modified multicomponent vaporization model is presented and implemented in the current study to simulate the behavior of UWS droplet in heated environment. Although water depletion is modeled as a vaporization process, urea depletion is modeled using two different approaches: (i) vaporization and (ii) direct thermal decomposition. The suitability of both depletion approaches is assessed in the current study by comparison with experimental data of the decay of a single UWS droplet in a quiescent heated environment. The decay rate of UWS droplet is accurately predicted with the multicomponent vaporization model. The possibility of internal gasification is demonstrated. Based on the complex decomposition behavior of urea, the current study proposes a decomposition mechanism for UWS droplet. The suitability of implementing the rapid mixing approach is assessed through comparison with the diffusion limit approach at various operating conditions and initial UWS droplet sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
This work is aimed to develop a multicomponent evaporation model for droplets of urea‐water solution (UWS) and a thermal decomposition model of urea for automotive exhausts by using the selective catalytic reduction systems. In the multicomponent evaporation model, the influence of urea on the UWS evaporation is taken into account using a nonrandom two‐liquid activity model. The thermal decomposition model is based on a semidetailed kinetic scheme accounting not only for the production of ammonia (NH3) and isocyanic acid but also for the formation of heavier solid by‐products (biuret, cyanuric acid, and ammelide). This kinetics model has been validated against gaseous data as well as solid‐phase concentration profiles obtained by Lundstroem et al. (2009) and Schaber et al. (2004). Both models have been implemented in IFP‐C3D industrial software to simulate UWS droplet evaporation and decomposition as well as the formation of solid by‐products. It has been shown that the presence of the urea solute has a small influence on the water evaporation rate, but its effect on the UWS temperature is significant. In addition, the contributions of hydrolysis and thermolysis to urea decomposition have been assessed. Finally, the impacts of the heating rate as well as gas‐phase chemistry on urea decomposition pathways have been studied in detail. It has been shown that reducing the heating rate of the UWS causes the extent of the polymerization to decrease because of the higher activation energy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

3.
The evaporation behavior of urea‐water‐solution (UWS) droplet was investigated for application to urea‐selective catalytic reduction (SCR) systems. A number of experiments were performed with single UWS droplet suspended on the tip of a fine quartz fiber. To cover the temperature range of real‐world diesel exhausts, droplet ambient temperature was regulated from 373 to 873 K using an electrical furnace. As a result of this study, UWS droplet revealed different evaporation characteristics depending on its ambient temperature. At high temperatures, it showed quite complicated behaviors such as bubble formation, distortion, and partial rupture after a linear D2‐law period. However, as temperature decreases, these phenomena became weak and finally disappeared. Also, droplet diminishment coefficients were extracted from transient evaporation histories for various ambient temperatures, which yields a quantitative evaluation on evaporation characteristics of UWS droplet as well as provides valuable empirical data required for modeling or simulation works on urea‐SCR systems. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

4.
The behavior of droplets of urea-water-solution (UWS) evaporating under the influence of a hot stream of air was investigated experimentally, under temperatures ranging from 100°C to 400°C. The droplets were suspended on a glass microfiber to minimize the influence of heat conduction, through the fiber, on the evaporation rate of the droplet. The flow rate of air, under all experimental conditions, was measured and these data were used to estimate the average velocity of air around the droplet. Experiments were also conducted on droplets of pure water and the results were compared. The initial mass fraction of urea, in the solution, did not appear to have a significant effect on the evaporation constant, but it did affect a few essential aspects of the evaporation behavior. The evaporation of water droplets was in accordance with the d2 law at all temperatures, whereas the evaporation of UWS droplets was ambient-temperature dependent.  相似文献   

5.
Urea water solution (UWS) droplet evaporation characteristics directly affect the conversion and distribution of NH3 in urea based selective catalytic reduction (SCR) system. The UWS droplet temperature is very difficult to be measured directly. Whereas, this piece of research work involves the measurement of droplet temperature by an Omega‐K type thermocouple of 127 µm diameter. According to the temperature changes of the droplet, the evaporation process can be divided into four steps. Droplets heat and mass transfer processes are derived theoretically at high exhaust temperature. The UWS droplet has been placed in a continuous observation test system to investigate its diameter and temperature variations in the aforementioned four steps. The results shown that, this unique method of four steps analysis has more explicitly and better described the UWS evaporation process, hence establishing the basis for the subsequent detailed simulation and monitoring. © 2015 American Institute of Chemical Engineers AIChE J, 62: 880–890, 2016  相似文献   

6.
The evaporation of water from a single droplet of urea water solution is investigated theoretically by a Rapid Mixing model and a Diffusion Limit model, which also considers droplet motion and variable properties of the solution. The Rapid Mixing model is then implemented into the commercial CFD code Fire 8.3 from AVL Corp. Therein, the urea water droplets are treated with Lagrangian particle tracking. The evaporation model is extended for droplet boiling and thermal decomposition of urea. CFD simulations of a SCR DeNOx-system are compared to experimental data to determine the kinetic parameters of the urea decomposition. The numerical model allows to simulate SCR exhaust system configurations to predict conversion and local distribution of the reducing agent.  相似文献   

7.
泡沫金属应用到换热器空气侧有望提高析湿工况下的换热性能。为了了解湿空气在泡沫金属内的热质传递和压降特性,建立了泡沫金属内液滴形成、生长和运动特性的数值模型。基于液滴成核数目和成核临界半径得出液滴形成过程的传质率模型;通过建立液滴与湿空气相界面附近湿空气中水蒸气的组分守恒方程,得出液滴生长过程的传质率模型;通过对不同孔棱柱表面液滴的受力分析,建立在重力和风力的共同作用下的液滴接触角模型。将液滴形成及生长的传质率模型和接触角模型分别作为质量源项和表面张力源项,加入连续性方程、动量方程和能量方程组中,实现对泡沫金属内液滴生长、形成和运动过程模拟。模型的实验验证结果表明,换热量预测值与实验结果的最大偏差为11.9%,压降预测值与实验结果的最大偏差为17.7%。  相似文献   

8.
Spreading of liquid droplets over solid surfaces is a fundamental process with a number of applications including electro-chemical reactions on catalyst surface in membrane electrode assembly of proton exchange membrane (PEM) fuel cell and direct alcohol fuel cell. The spreading process of droplet on the PEM porous substrate consists of two phenomena, e.g., spreading of droplet on PEM surface and imbibition of droplet into PEM porous substrate. The shrinkage of the droplet base occurs due to the suction of the liquid from the droplet into the PEM porous substrate. As a result of these two competing processes, the radius of the drop base goes through a maximum with time. The variation of droplet base and front diameter with time on the PEM porous substrate is monitored using microscope fitted with CCD camera and a PC. It is seen that the droplet base diameter goes through a maximum with time, whereas the front diameter increases continuously with time. Further, methanol droplet spreading and wetting front movement was faster than that for ethanol and deionized water. As the PEM porous substrate is wetted and imbibed well by the methanol compared to ethanol, it is expected that the cross over of methanol would be higher than that of ethanol in direct alcohol fuel cell. It should be noted that cross over of alcohol from anode side to cathode side through membrane is detrimental to the fuel cell operation. The experimental data on the variation of droplet base and wetting front diameter with time is predicted by the model available in the literature.  相似文献   

9.
曾佑林  姜水生  文华  张新宇 《化工进展》2021,40(8):4445-4455
为探究荷叶表面的液滴撞击行为规律,本文利用高速摄像机以14000帧/秒的帧率分别记录水滴和4种不同相对分子质量的聚氧化乙烯(polyethylene oxide,PEO)水溶液液滴竖直撞击荷叶表面的动力过程,其撞击速度为0.3~3m/s。实验结果表明,水滴与低相对分子质量(5×104)的PEO液滴撞击荷叶表面的行为现象相似,两者随撞击速度增加依次有规则反弹、向上发射卫星液滴、不规则反弹(或部分反弹)、液滴破碎和液指断裂分离小液滴等现象发生,但水滴的接触时间更短,最大铺展系数也更小。中等相对分子质量(3×105)PEO液滴在低速和高速撞击时分别为振荡弹起模态和振荡模态,临界速度为1.13m/s。高相对分子质量(1×106、4×106)的PEO液滴,其高分子长链与表面交互作用显著增强,表现出很强的黏性,撞击后反弹完全被抑制,均黏附沉积于荷叶表面;液滴发生沉积的临界Oh数为0.0544,且Oh数越大,液滴越难发生反弹。速度一定时,相对分子质量3×105以上的3种PEO液滴的最大铺展系数均小于水滴;三者的上升系数随速度增加先减小后保持基本稳定或略微增加。  相似文献   

10.
A reliable mathematical model of urea-water-solution(UWS) droplet evaporation and thermolysis is developed.The well known Abramzon–Sirignano evaporation model is corrected by introducing an adjustment coefficient considering the different evaporation behaviors of UWS droplet at different ambient temperatures. A semidetailed kinetic scheme of urea thermolysis is developed based on Ebrahimian's work. Sequentially, the evaporation characteristics, decomposition efficiency of a single UWS droplet and deposit formation are simulated. As a result, the relation of evaporation time, relative velocity, exhaust temperature and droplet initial diameter is presented. Synchronously, it indicates that temperature is the decisive factor for urea thermolysis. Different temperatures result in different deposit components, and deposit yield is significantly influenced by temperature and decomposition time. The current work can provide guidance for designing urea injection strategy of SCR systems.  相似文献   

11.
真空制冰过程中水滴动态特性   总被引:4,自引:3,他引:1       下载免费PDF全文
为研究真空制冰水滴温度影响因素并进行分析,搭建了真空制冰动态特性研究实验台,进行相关实验,采集了相关图像和实验数据。对采集的图像进行了定性分析。采集的实验数据主要是在不同环境温度、环境压力、供水水温、水质、粒径及水滴下落初速度等情况下水滴温度随时间的变化情况,并与模拟计算值一并进行了对比分析。分析得出环境温度、供水水温、下落初速度对其影响较小,而环境压力、水滴粒径对其影响较为明显,供水水质对其影响比较特殊,主要表现在液滴的最大过冷度上。  相似文献   

12.
Absorption of picoliter (pL) droplets into porous substrates is studied experimentally and numerically. In the case of pL droplets, major phenomena involved in the interaction between droplet and porous media develop at different time scales: spreading and wetting at microseconds, absorption and wicking at milliseconds, and evaporation at seconds. Therefore, one can decouple these processes to minimize the complexity of the study. A high‐speed imaging system capable of 1 million frames per second is used to visualize individual droplets impacting, spreading, and imbibing on substrates. To simulate droplet dynamics, the governing equations for flow outside and inside porous media are proposed and solved using an in‐house developed computational fluid dynamics solver. The simulation results are in good agreement with the experimental data. The effect of drop impact velocity and fluid properties on final dot shape in the porous substrates is investigated through a series of parametric numerical studies. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1690–1703, 2017  相似文献   

13.
单液滴撞击超疏水冷表面的反弹及破碎行为   总被引:3,自引:2,他引:3  
李栋  王鑫  高尚文  谌通  赵孝保  陈振乾 《化工学报》2017,68(6):2473-2482
对直径2.8 mm的液滴撞击冷表面的动态行为进行快速可视化观测,对比研究单液滴撞击普通冷表面以及超疏水冷表面的动力学特性,同时对初始撞击速度以及冷表面温度对液滴动态演化行为的影响进行了对比分析。实验结果表明:与液滴撞击普通冷表面(温度-25~-5℃)发生瞬时冻结沉积相比,液滴撞击超疏水冷表面时均未发生冻结,而且伴随铺展、回缩、反弹以及破碎行为;撞击速度越大,普通冷表面上液滴铺展因子越大,而且液滴越易冻结。液滴低速(We≤76)撞击超疏水冷表面会发生反弹现象,但速度对液滴最大铺展时间无影响;液滴高速(We≥115)撞击超疏水冷表面后会产生明显液指,而且破碎为多组卫星液滴。此外,冷表面温度仅影响液滴反弹高度,对液滴最大铺展因子以及液滴铺展时间影响较小。结果表明超疏水表面可显著抑制液滴撞击冷表面的瞬时冻结沉积。  相似文献   

14.
夏红桃  邹思宇  肖杰 《化工学报》2019,70(2):634-645
采用计算流体力学相场方法模拟了单个剪切变稀非牛顿流体液滴在随机粗糙表面的沉积过程,并分析揭示了随机粗糙表面形貌对液滴运动状态及平衡状态的影响。结果表明,在指定的相同操作条件下,即使在光滑表面,剪切变稀流体液滴比牛顿流体液滴铺展更大且回缩至平衡所需时间更少,不存在二次铺展;剪切变稀流体液滴最大铺展直径随均方根粗糙度Rr与Wenzel粗糙度Wr的增加而略有增加。Wr相同时,随着Rr增大,液滴最终铺展系数减小,高度系数增大,平衡接触面积及接触角有所减小。在Rr相同情况下,随着Wr增大,液滴达到平衡所需时间缩短,平衡接触面积线性增大。  相似文献   

15.
为了研究激波与亚毫米液滴相互作用过程,基于现有的实验结果,利用Fluent平台,采用VOF (Volume of Fluid)多相流模型和k-ε 湍流模型,通过二维数值模拟分析了不同韦伯数(We)对亚毫米液滴变形演化过程的影响规律,通过三维数值模拟揭示了亚毫米液滴爆炸式破碎机理。结果表明,韦伯数对液滴变形有促进作用,韦伯数越大,液滴在压缩变形阶段所需要的时间越短;在气动力不变的条件下,相同液滴直径条件下,马赫数越大,液滴所受的气动力越大,液滴质心位移的无量纲加速度越大,低韦伯数下液滴的横向展开速率随韦伯数增大而减小,而高韦伯数下液滴的横向展开速率随韦伯数增大而增大。数值模拟结果与对比实验结果相近,有效阐明了韦伯数对亚毫米液滴变形的作用。  相似文献   

16.
The spontaneous spreading of emulsions of water dispersed in silicone oil onto glass surfaces is examined using differential interference contrast (DIC) microscopy. Spreading occurs via a precursor film from which the emulsion droplets are excluded. The radius of the interline of the bulk drop is found to vary as (time)1/10, as is commonly observed for the spontaneous spreading of pure liquids. The spreading rate constant decreases linearly with the volume percent of the dispersed phase, but drops suddenly to zero at approximately 73% dispersed phase. The width and spreading rate of the precursor film also is found to decrease with dispersed phase concentration. A fingering type of instability is evident at the leading edge of the precursor film, yet has little effect on the spreading rate of either the precursor film or the droplet interline. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1817–1825, 2001  相似文献   

17.
乙醇添加剂能显著改变去离子水基液滴碰壁动态特性。本文设计并搭建了液滴碰壁动态演化及传热研究实验台,并就溶液表面张力、液滴韦伯数(We)、壁面温度等对液滴碰壁的特性影响进行了实验研究。结果表明乙醇添加剂能够有效增强液滴润湿特性,促进液滴的雾化和破碎现象,同时抑制液滴反弹能力。并且这一能力随着乙醇溶液浓度的增大而增强。润湿特性随着液滴We的增大呈现出先增强后发生反弹现象的趋势,乙醇添加剂能够有效地抑制这种反弹趋势,并使混合液滴继续发生铺展现象。壁面温度125℃时,当We由15增大到33时,水基液由铺展阶段过渡到反弹阶段,而添加乙醇使得液滴继续铺展,没有发生反弹现象。乙醇添加剂能够明显地提高液滴由铺展到反弹的临界转变温度(TCHF),扩大液滴核态沸腾对应的温度区域,延迟液滴进入过渡沸腾阶段。  相似文献   

18.
采用实验观测与图像处理相结合,对CCl4液滴在水下撞击凹壁面后的动态特性进行了系统研究。结果表明,液滴撞击凹壁面的过程经历了下降、扩散、松弛、滚动和润湿五个阶段。液滴与凹壁面间的撞击角θ对液滴拉伸特性的影响大于液滴初始直径和壁面曲率半径。当θ=90°时液滴垂直撞击壁面最低点,液滴迅速弹跳并强烈回缩,铺展时间短且变形率最小。在θ=100°~150°时,随着撞击角增加液滴变形幅度增大,相邻时刻滑动变形率小于滚动变形率。110°<θ<130°时液滴以滑动和铺展为主。θ>130°时液滴沿壁面滚动现象更容易发生。θ=154.2°时液滴接近纯滚动状态。增大撞击角,液滴沿凹壁面滚动下滑有效降低壁面黏附和液滴破碎。  相似文献   

19.
针对单个乙醇溶液液滴在降压环境下蒸发的传热传质过程建立了数学模型。模型基于液相的能量守恒和 传质扩散理论,利用经典拓展模型计算液滴的质量蒸发率,并引入活度系数考虑液滴表面的蒸气分压。采用液 滴悬挂法进行实验,分别记录了乙醇溶液液滴和乙酸溶液液滴在降压蒸发过程中的液滴内温度变化。将实验数 据与计算结果对比,验证了模型的有效性。通过模型计算获得了液滴内部温度分布以及浓度分布随时间的变化。 结果表明:快速降压阶段空气流动较快,加之乙醇工质易挥发,液滴表面温度下降迅速,液滴内部温差和乙醇 浓度梯度较大;压力稳定后,空气流速为零,液滴内部温差和乙醇浓度梯度逐渐减小。由于液滴内部的热扩散 速率大于传质扩散系数,内部温度随时间的变化比浓度随时间的变化更快。  相似文献   

20.
Organic gel propellants are promising candidates for a variety of rocket motor and scramjet applications, since they are intrinsically safe and provide high performance. It is well known that organic gel fuel droplets exhibit distinct combustion characteristics compared with conventional liquid fuel droplets, and furthermore an understanding of the ignition delay and lifetime of these droplets is critical to the improvement of combustor design. In this work, investigations of the combustion of unsymmetrical dimethylhydrazine (UDMH) organic gel droplets in different nitrogen tetroxide (NTO) oxidizing atmospheres were conducted using two sets of experimental apparatus. The combustion characteristics under different conditions of temperature and pressure were compared and analyzed based on the flame shapes observed during experimentation. From these trials, an unsteady combustion model was developed and used for the numerical simulation of spray‐sized UDMH organic gel droplet combustion in an NTO atmosphere. The hypergolic ignition and burning characteristics of the organic gel droplets under conditions simulating either engine startup or steady state combustion were compared, and changes in ignition delay and droplet lifetime with ambient temperature and pressure were analyzed. The experimental and numerical results show that the UDMH organic gel droplets exhibit periodic swell‐burst behavior following the formation of an elastic film at the droplet surface. Each droplet burst results in fuel vapor ejection and flame distortion, the intensity of which declines with increasing ambient pressure. However, the swell‐burst period is extended with increasing ambient pressure, which results in potential flameout. Under conditions of low temperature and pressure similar to those at engine startup, the ignition delay and lifetime of spray‐sized gel droplets decrease with increasing temperature or pressure, although there is a sharp increase in droplet lifetime when the ambient pressure reaches a critical value associated with flameout. The ignition delay was found to be a rate‐limited phenomenon linked to the droplet heating rate. The proportion of ignition delay and droplet lifetime due to droplet heating‐up decreased with increasing temperature or decreasing pressure. Conversely, at high temperatures and pressures simulating the engine’s steady state operating conditions, the droplets were observed to flameout after several swell‐burst periods and both ignition delay and lifetime decreased monotonically with increasing temperature or pressure. The ignition delay time was determined to be rate‐limited by gas phase chemical reactions and contributed very little to the overall droplet lifetime compared with the engine startup condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号