首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The power‐to‐gas process is an option to transform fluctuating renewable electric energy into methane via water electrolysis and subsequent conversion of H2 by methanation with CO2. The dynamic behavior of the methanation reactor may then be a critical aspect. The kinetics of CO2 methanation on a Ni‐catalyst were determined under isothermal and stationary conditions. Transient isothermal kinetic experiments showed a fast response of the rate on step changes of the concentrations of H2, CO2; in case of H2O, the response was delayed. Non‐isothermal experiments were conducted in a wall‐cooled fixed‐bed reactor. Temperature profiles were measured and the effect of a changing volumetric flow was studied. The experimental data were compared with simulations by a transient reactor model.  相似文献   

2.
P. Lan  Q. Xu  M. Zhou  L. Lan  S. Zhang  Y. Yan 《化学工程与技术》2010,33(12):2021-2028
Catalytic steam reforming of bio‐oil is an economically‐feasible route which produces renewable hydrogen. The Ni/MgO‐La2O3‐Al2O3 catalyst was prepared with Ni as active agent, Al2O3 as support, and MgO and La2O3 as promoters. The experiments were conducted in fixed bed and fluidized bed reactors, respectively. Temperature, steam‐to‐carbon mole ratio (S/C), and liquid hourly space velocity (LHSV) were investigated with hydrogen yield as index. For the fluidized bed reactor, maximum hydrogen yield was obtained under temperatures 700–800 °C, S/C 15–20, LHSV 0.5–1.0 h–1, and the maximum H2 yield was 75.88 %. The carbon deposition content obtained from the fluidized bed was lower than that from the fixed bed. The maximum H2 yield obtained in the fluidized bed was 7 % higher than that of the fixed bed. The carbon deposition contents obtained from the fluidized bed was lower than that of the fixed bed at the same reaction temperature.  相似文献   

3.
A novel dual‐zone fluidized bed reactor was proposed for the continuous adsorption and reduction of NOx from combustion flue gases. The adsorption and reaction behaviour of such a reactor has been simulated in a fixed bed reactor using Fe/ZSM‐5 catalyst and propylene reductant with model flue gases. Fe/ZSM‐5 exhibited acceptable activity at T = 350°C and GHSV = 5000 h?1 when O2 concentration was controlled at levels lower than 1% with a HC to NO molar ratio of about 2:1. XPS and BET surface area measurement revealed the nature of the deactivation of the catalyst. Those performance data demonstrated the feasibility of a continuous dual‐zone fluidized bed reactor for catalytic reduction of NOx under lean operating conditions.  相似文献   

4.
Wire‐mesh sensors are increasingly used for flow imaging in packed beds. In this study, a capacitance wire‐mesh sensor is applied to measure the cross‐sectional liquid phase distribution in a rotating fixed‐bed reactor. The liquid filling level is derived as a crucial parameter defining the operational window of the reactor concept. Contrary to the standard sensor configuration, wireless data transfer and autonomous power supply is integrated. Furthermore, appropriate data processing is required to visualize the liquid flow of the three‐phase system (nitrogen, cumene and γ‐Al2O3 particles).  相似文献   

5.
Optimization of Fischer‐Tropsch (FT) process in a fixed‐bed reactor is carried out using non‐uniform catalysts. The C5+ yield of the reactions is maximized utilizing a combination of non‐uniform catalysts across the bed. A 1D heterogeneous model is developed to simulate the bed containing uniform and non‐uniform catalysts. It is found that the egg‐shell and surface‐layered catalysts result in higher C5+ yield. Moreover, effects of cooling temperature are studied. Genetic Algorithm (GA) and Successive Quadratic Programming (SQP) methods are applied. Feed and cooling temperature are selected as decision variables together with distribution of non‐uniform catalysts along the bed. The optimization result shows 14.47 % increase in the C5+ yield with respect to the base condition.  相似文献   

6.
The Fischer‐Tropsch synthesis (FTS) in gaseous and supercritical phases was examined in a continuous, high‐pressure fixed‐bed reactor by employing a cobalt catalyst (Co‐Ru/γ‐Al2O3). The kinetic modeling of the FTS was investigated in the reactor over a 60–80 mesh cobalt catalyst. The Langmuir‐Hinshelwood kinetic equation was used for both the Fisher‐Tropsch (FT) and water gas shift (WGS) reactions. The kinetic model was applied for simulation of the reactor with 16–20 mesh cobalt catalyst. The simulation results showed a good agreement with the experimental data. The experimental data showed that higher CO conversion and lower CH4 and CO2 selectivities were achieved in supercritical media compared to the gaseous phase. The BET surface area and pore volume enhancement results provided evidence of the higher in situ extraction and greater solubility of heavy hydrocarbons in supercritical media than in gaseous phases. Furthermore, the effects of supercritical solvent such as n‐pentane, n‐hexane, n‐heptane and their mixtures were studied. Moreover, the influence of reaction temperature, H2/CO ratio, W/F(CO+H2) and pressure tuning in the supercritical media FT synthesis were investigated, as well as the effect of the supercritical fluid on the heat transfer within the reactor. The product carbon distribution had a similar shape for all types of solvents and shifted to lighter molar mass compounds with increasing temperature, H2/CO ratio, and W/F(CO+H2). Finally, the product distribution shifted to higher molar mass hydrocarbons with increasing pressure. As a result, one may conclude that a mixture of hydrocarbon products of the FTS can be used as a solvent for supercritical media in Fischer‐Tropsch synthesis.  相似文献   

7.
Pyrolytic lignin can be transformed to liquid transportation fuels by hydrotreatment, which requires hydrogen (H2). Bio‐oil is a suitable renewable feedstock for H2 production. Here, n‐butanol was chosen as a model compound representing alcohols in the bio‐oil aqueous fraction. H2 production from steam reforming of n‐butanol was investigated in a fixed‐bed reactor using a commercial Ni/hydrotalcite catalyst. A plausible reaction pathway in the presence of Ni was discussed. An increase in reforming temperature, space time, and steam/carbon ratio in the feed enhanced the n‐butanol conversion and H2 yield. Reaction kinetics was studied in the defined chemical control regime. The reaction order with respect to n‐butanol (one) and the activation energy were determined.  相似文献   

8.
The kinetics of the thermally induced solid‐state polymerization (SSP) of nylon‐6 were examined in both a fixed‐bed reactor and a rotary reactor. Factors such as the regulator content, the reaction temperature and time, the particle size, the type and geometry of the nylon‐6 prepolymer, the nitrogen gas flow rate, the water content of the nitrogen gas flow, and the polymerization process were studied. The results showed that the regulator content, the reaction temperature and time, and the particle size were the primary factors, and that the others were negligible. Moreover, the SSP rate and number‐average molecular weight (Mn) increased with increasing reaction temperature and time and decreasing particle size. The SSP rate and Mn had maximum values with increasing regulator content in an experimental range of 0.03–0.07 wt %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 616–621, 2002; DOI 10.1002/app.10341  相似文献   

9.
A multidimensional heterogeneous and dynamic model of a fixed‐bed heat exchanger reactor used for CO2 methanation has been developed in this work that is based on mass, energy and momentum balances in the gas phase and mass and energy balances for the catalyst phase. The dynamic behavior of this reactor is simulated for transient variations in inlet gas temperature, cooling temperature, gas inlet flow rate, and outlet pressure. Simulation results showed that wrong‐way behaviors can occur for any abrupt temperature changes. Conversely, temperature ramp changes enable to attenuate and even fade the wrong‐way behavior. Traveling hot spots appear only when the change of an operating condition shifts the reactor from an ignited steady state to a non‐ignited one. Inlet gas flow rate variations reveal overshoots and undershoots of the reactor maximum temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 468–480, 2018  相似文献   

10.
BACKGROUND: Hexyl laurate has been applied widely in cosmetic industries and is synthesized by chemical methods with problems of cost, environmental pollution, and by‐products. In this study, Lipozyme® IM77 (from Rhizomucor miehei) was used to catalyze the direct‐esterification of hexanol and lauric acid in a solvent‐free system by utilizing a continuous packed‐bed reactor, wherein the aforementioned difficulties could be overcome. Response surface methodology (RSM) and three‐level‐three‐factor Box‐Behnken design were employed to evaluate the effects of synthesis parameters, such as reaction temperature (45–65 °C), mixture flow rate (0.25–0.75 mL min?1) and concentration of lauric acid (100–300 mmol L?1) on the production rate (µmol min?1) of hexyl laurate by direct esterification. RESULTS: The production rate was affected significantly by the mixture flow rate and lauric acid concentration. On the basis of ridge‐max analysis, the optimum synthesis conditions for hexyl laurate were as follows: 81.58 ± 1.76 µmol min?1 at 55 °C, 0.5 mL min?1 flow rate and 0.3 mol L?1 lauric acid. CONCLUSION: The lipase‐catalyzed synthesis of hexyl laurate by Lipozyme® IM‐77 in a continuous packed‐bed bioreactor and solvent‐free system was successfully developed; optimization of the reaction parameters was obtained by Box–Behnken design and RSM. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
The oxidative dehydrogenation of a 1‐butene/trans‐butene (1:1) mixture to 1,3‐butadiene was carried out in a two‐zone fluidized bed reactor using a Mo‐V‐MgO and a γ‐Bi2MoO6 catalyst. The significant operating conditions temperature, oxygen/butene molar ratio, butene inlet height, and flow velocity were varied to gain high 1,3‐butadiene selectivity and yield. Furthermore, axial concentration profiles were measured inside the fluidized bed to gain insight into the reaction network in the two zones. For optimized conditions and with a suitable catalyst, the two‐zone fluidized bed reactor makes catalyst regeneration and catalytic reaction possible in a single vessel. In the lower part of the fluidized bed, the oxidation of coke deposits on the catalyst as well as the filling of oxygen vacancies in the lattice can occur. The oxidative dehydrogenation reaction takes place in the upper zone. Thorough particle mixing inside fluidized beds causes permanent particle exchange between both zones. © 2016 American Institute of Chemical Engineers AIChE J, 63: 43–50, 2017  相似文献   

12.
TiO2 is a suitable catalyst for potential photocatalytic processes, e.g., in wastewater treatment. For a technical realization of such processes, the application of immobilized TiO2 in a continuous process would be desirable. However, since UV radiation has a limited penetration depth into a packed bed of pure TiO2, supporting it on UV‐transparent glass beads offers the possibility to implement continuous photocatalytic processes in a fixed‐bed reactor. Considering this fact, glass beads were coated with TiO2 powder in a fluidized‐bed reactor. The coated glass beads with varying TiO2 layer thickness were tested in the photocatalytic degradation of methylene blue, and the influence of an addition of methyl cellulose during the coating process on the photocatalytic performance was investigated.  相似文献   

13.
The model enzyme β‐galactosidase was entrapped in chitosan gel beads and tested for hydrolytic activity and its potential for application in a packed‐bed reactor. The chitosan beads had an enzyme entrapment efficiency of 59% and retained 56% of the enzyme activity of the free enzyme. The Michaelis constant (Km) was 0.0086 and 0.011 μmol/mL for the free and immobilized enzymes, respectively. The maximum velocity of the reaction (Vmax) was 285.7 and 55.25 μmol mL?1 min?1 for the free and immobilized enzymes, respectively. In pH stability tests, the immobilized enzyme exhibited a greater range of pH stability and shifted to include a more acidic pH optimum, compared to that of the free enzyme. A 2.54 × 16.51‐cm tubular reactor was constructed to hold 300 mL of chitosan‐immobilized enzyme. A full‐factorial test design was implemented to test the effect of substrate flow (20 and 100 mL/min), concentration (0.0015 and 0.003M), and repeated use of the test bed on efficiency of the system. Parameters were analyzed using repeated‐measures analysis of variance. Flow (p < 0.05) and concentration (p < 0.05) significantly affected substrate conversion, as did the interaction progressing from Run 1 to Run 2 on a bed (p < 0.05). Reactor stability tests indicated that the packed‐bed reactor continued to convert substrate for more than 12 h with a minimal reduction in conversion efficiency. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1294–1299, 2004  相似文献   

14.
15.
Alcalase® (Subtilisin A) was immobilized by simple hydrophobic adsorption onto various surface‐grafted macroporous silica gels resulting in easy‐to‐prepare and stable biocatalysts enabling the efficient kinetic resolution (KR) and dynamic kinetic resolution (DKR) of racemic N‐Boc‐phenylalanine ethyl thioester with benzylamine. The immobilized Alcalase biocatalysts, which retained their activity and selectivity when stored at 4 °C for more than a year, were tested in enzymatic aminolysis in batch and continuous‐flow KRs resulting in (S)‐N‐Boc‐phenylalanine benzylamide in high enantiomeric purity. In KR of the racemic thioester by Alcalase‐catalyzed aminolysis in a continuous‐flow reactor, the productivity (specific reaction rate, rflow) and enantiomeric ratio (E) were studied in the 0–100 °C range. The effect of the temperature on base‐catalyzed racemization of the non‐transformed (R)‐thioester in a continuous‐flow reactor was also investigated in the 0–150 °C range. The continuous‐mode DKR of the racemic thioester in a serial cascade system of six biocatalyst‐filled columns at 50 °C for KR and five grafted silica gel‐filled columns at 150 °C for racemization resulted in the formation of the (S)‐benzylamide in 79% conversion, 8.17 g L −1 h−1 volumetric productivity and 98% ee. This is the first example of a dynamic kinetic resolution of an amino acid derivative in continuous‐flow mode using an alternating cascade of packed‐bed enzyme reactors and racemization reactors kept at different temperatures.

  相似文献   


16.
We have achieved the non‐covalent immobilization of chiral primary amino acid‐derived diamines on organic and inorganic sulfonated solid acids through acid‐base interaction. With the commercial sulfonated fluoropolymer nafion® NR50 as support an optimal balance was found between activity and stereoselectivity of the supported catalyst in direct asymmetric aldol reactions of linear ketones and aromatic aldehydes. Under optimized conditions aldol products were obtained in high yields and with excellent enantioselectivities for the syn‐product (up to 98% ee). Furthermore, catalysis with the supported diamine was demonstrated to occur truly heterogeneously and the loaded nafion® NR50 beads could be reused several times. Ultimately, the immobilized catalyst/nafion® NR50 system was successfully implemented in a fixed‐bed reactor set‐up under continuous flow conditions.  相似文献   

17.
Utilizing volatile renewable energy sources (e.g., solar, wind) for chemical production systems requires a deeper understanding of their dynamic operation modes. Taking the example of a methanation reactor in the context of power‐to‐gas applications, a dynamic optimization approach is used to identify control trajectories for a time optimal reactor start‐up avoiding distinct hot spot formation. For the optimization, we develop a dynamic, two‐dimensional model of a fixed‐bed tube reactor for carbon dioxide methanation which is based on the reaction scheme of the underlying exothermic Sabatier reaction mechanism. While controlling dynamic hot spot formation inside the catalyst bed, we prove the applicability of our methodology and investigate the feasibility of dynamic carbon dioxide methanation. © 2016 American Institute of Chemical Engineers AIChE J, 63: 23–31, 2017  相似文献   

18.
A new generation of double dielectric barrier discharge (DDBD) reactor featured by a metal powder (MP) high voltage electrode is presented. The MP high voltage electrode not only has excellent homogeneous discharge performance but also has the advantage of without regular maintenance. Therefore, the MP‐DDBD reactor was proved to be suitable for the uninterrupted and safe synthesis of high purity H2O2 aqueous solution with up to 65 wt % concentration from the H2/O2 mixture. The scale‐up synthesis of H2O2 was successfully attempted in an integrated device based on the MP‐DDBD reactor. The future practical H2O2 synthesizer based on the MP‐DDBD reactor will be small and movable, and therefore, be convenient to supply high purity H2O2 on site for small scale users like semiconductor industry. © 2013 American Institute of Chemical Engineers AIChE J 60: 415–419, 2014  相似文献   

19.
A two‐dimensional pseudohomogeneous reactor model is proposed to simulate the performance of fixed‐bed Fischer‐Tropsch synthesis (FTS) reactors by lumped thought. A CO consumption kinetics equation and a carbon chain growth probability model were incorporated into the reactor model. The model equations discretized by a two‐dimensional orthogonal collocation method were solved by the Broyden method. Concentration and temperature profiles were obtained. The validity of the reactor model against the pilot plant test data was investigated. Satisfactory agreements between model prediction values and experiment results were obtained. Further simulations were carried out to investigate the effect of operating conditions on the reaction behavior of the fixed‐bed FTS reactor.  相似文献   

20.
Bi1.5Y0.3Sm0.2O3?δ (BYS), a ceramic material showing great activity and selectivity to oxidative coupling of methane (OCM), has been fabricated into catalyst rings (i.e., capillary tubes) with a plurality of self‐organized radial microchannels. The unique microchannels inside such BYS catalyst rings allow easier access of reactants, as well as increased the surface area, which potentially contributes to higher reaction efficiencies due to improved mass transfer. The micro‐structured BYS catalyst rings were investigated systematically via two types of reactors; (1) randomly packed fixed bed reactor and (2) monolithic‐like structured reactor. These two reactor designs have different flow patterns of reactants, that is, non‐ideal and ideal flows, which can significantly affect the final OCM performance. A remarkable improvement in C2+ yield (YC2+ > 20%) was obtained in the monolith‐like structured reactor, in contrast to randomly packed powder and micro‐structured rings (YC2+ < 15%), which proves the advantages of using a micro‐structured catalyst with an ideal flow in the feed for OCM. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3451–3458, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号