首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Global hydrodynamic characteristics, liquid mixing and gas‐liquid mass transfer for a 63 L split‐rectangular airlift reactor were studied. Correlations for gas holdup and overall liquid circulation velocity were derived for the air‐water system as a function of the specific power input; these were compared to data and correlations for reactor volumes between 4.7 L and 4600 L. A partial recirculation of small bubbles in the riser was observed when Ugr > 0.03 m/s, which was attributed to the use of a single‐orifice nozzle as the gas phase distributor. The dimensionless mixing time and the overall axial dispersion coefficient were nearly constant for the range of gas flow rates studied. However, values of KL/dB were greater than those reported in previous studies and this is caused by the partial recirculation of the gas phase in the riser. While scale effects remain slight, the use of a gas distributor favouring this partial recirculation seems adequate for mass transfer in split‐rectangular airlift reactors.  相似文献   

2.
This article discusses the characteristics of turbulent gas–liquid flow through tubular reactors/contactors equipped with screen‐type static mixers from a macromixing perspective. The effect of changing the reactor configuration, and the operating conditions, were investigated by using four different screen geometries of varying mesh numbers. Residence time distribution experiments were conducted in the turbulent regime (4500 < Re < 29,000). Using a deconvolution technique, the RTD function was extracted to quantify the axial/longitudinal liquid‐phase dispersion coefficient. The findings highlight that axial dispersion increases with an increasing flow rate and/or gas‐phase volume fraction. However, regardless of the number and geometry of the mixing elements, reactor configuration, and/or operating conditions, the recorded liquid‐phase axial dispersion coefficients in the presence of screens was lower than that for an empty pipe. Furthermore, the geometry of the screen was found to directly affect the axial dispersion coefficient in the reactor. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1390–1403, 2017  相似文献   

3.
The objective of this study is to characterize mass transfer in a rectangular air‐lift loop reactor in two‐phase flow. In a previous work, it has been shown that the reactor presents a complex gas flow pattern. Therefore, first, the global mass transfer volumetric coefficient kLa was measured in two‐phase flow, by three methods (two based on the liquid phase mass balance, one based on the gas phase mass balance). Then, second, a localized analysis was implemented in order to obtain more information about the phenomena governing the gas phase flow.  相似文献   

4.
A new process for D ‐glucose hydrogenation in 50 wt% aqueous solution, into sorbitol in a 1.5 m3 gas–liquid–solid three‐phase flow airlift loop reactor (ALR) over Raney Nickel catalysts has been developed. Five main factors affecting the reaction time and molar yield to sorbitol, including reaction temperature (TR), reaction pressure (PR), pH, hydrogen gas flowrate (Qg) and content of active hydrogen, were investigated and optimized. The average reaction time and molar yield were 70 min and 98.6% under the optimum operating conditions, respectively. The efficiencies of preparation of sorbitol between the gas–liquid–solid three‐phase flow ALR and stirred tank reactor (STR) under the same operating conditions were compared. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The Fischer‐Tropsch synthesis (FTS) in gaseous and supercritical phases was examined in a continuous, high‐pressure fixed‐bed reactor by employing a cobalt catalyst (Co‐Ru/γ‐Al2O3). The kinetic modeling of the FTS was investigated in the reactor over a 60–80 mesh cobalt catalyst. The Langmuir‐Hinshelwood kinetic equation was used for both the Fisher‐Tropsch (FT) and water gas shift (WGS) reactions. The kinetic model was applied for simulation of the reactor with 16–20 mesh cobalt catalyst. The simulation results showed a good agreement with the experimental data. The experimental data showed that higher CO conversion and lower CH4 and CO2 selectivities were achieved in supercritical media compared to the gaseous phase. The BET surface area and pore volume enhancement results provided evidence of the higher in situ extraction and greater solubility of heavy hydrocarbons in supercritical media than in gaseous phases. Furthermore, the effects of supercritical solvent such as n‐pentane, n‐hexane, n‐heptane and their mixtures were studied. Moreover, the influence of reaction temperature, H2/CO ratio, W/F(CO+H2) and pressure tuning in the supercritical media FT synthesis were investigated, as well as the effect of the supercritical fluid on the heat transfer within the reactor. The product carbon distribution had a similar shape for all types of solvents and shifted to lighter molar mass compounds with increasing temperature, H2/CO ratio, and W/F(CO+H2). Finally, the product distribution shifted to higher molar mass hydrocarbons with increasing pressure. As a result, one may conclude that a mixture of hydrocarbon products of the FTS can be used as a solvent for supercritical media in Fischer‐Tropsch synthesis.  相似文献   

6.
This study evaluates the feasibility of using a continuous‐flow stirred vessel reactor (CFSVR) to synthesize n‐butyl phenyl ether (ROPh) from n‐butyl bromide (RBr) and sodium phenolate (NaOPh) by liquid–liquid–solid phase‐transfer catalysis (triphase catalysis). The factors affecting the preparation of triphase catalysts, the etherification reaction in a batch reactor, and the performance in a CFSVR were investigated. The kinetic study with a batch reactor indicated that when the initial concentration of NaOPh or RBr was high, the conversion of RBr would depend on the initial concentration of both RBr and NaOPh. The reaction can be represented by a pseudo‐first‐order kinetic model when the concentration of NaOPh is in proper excess to that of RBr, and the apparent activation energy is 87.8 kJ mol?1. When the etherification reaction was carried out in the CFSVR, the catalyst particles did not flow out of the reactor, even at a high agitation speed. The conversion of RBr in the CFSVR was, as predicted, lower than that in the batch reactor, but was higher than the theoretical value because the dispersed phase is not completely mixed. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
The liquid‐phase catalytic hydrogenation of iso‐valeraldehyde to iso‐amyl alcohol was studied in a slurry reactor. The kinetics of liquid‐phase hydrogenation of iso‐valeraldehyde over a 5% Ru/Al2O3 catalyst was studied in the range of temperature 373‐393 K and H2 pressure 0.68‐2.72 MPa using 2‐propanol as the solvent. The selectivity to iso‐amyl alcohol was 100%. The kinetic data were analyzed using a simple power law model. A single site Langmuir‐Hinshelwood type model suggesting dissociative adsorption of hydrogen and surface reaction as the rate‐controlling step provided the best fit of the experimental data. The catalyst could be reused thrice without any loss in activity.  相似文献   

8.
A multidimensional heterogeneous and dynamic model of a fixed‐bed heat exchanger reactor used for CO2 methanation has been developed in this work that is based on mass, energy and momentum balances in the gas phase and mass and energy balances for the catalyst phase. The dynamic behavior of this reactor is simulated for transient variations in inlet gas temperature, cooling temperature, gas inlet flow rate, and outlet pressure. Simulation results showed that wrong‐way behaviors can occur for any abrupt temperature changes. Conversely, temperature ramp changes enable to attenuate and even fade the wrong‐way behavior. Traveling hot spots appear only when the change of an operating condition shifts the reactor from an ignited steady state to a non‐ignited one. Inlet gas flow rate variations reveal overshoots and undershoots of the reactor maximum temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 468–480, 2018  相似文献   

9.
In this work, the gas‐liquid mass transfer in a lab‐scale fibrous bed reactor with liquid recycle was studied. The volumetric gas‐liquid mass transfer coefficient, kLa, is determined over a range of the superficial liquid velocity (0.0042–0.0126 m.s–1), gas velocity (0.006–0.021 m.s–1), surface tension (35–72 mN/m), and viscosity (1–6 mPa.s). Increasing fluid velocities and viscosity, and decreasing interfacial tension, the volumetric oxygen transfer coefficient increased. In contrast to the case of co‐current flow, the effect of gas superficial velocity was found to be more significant than the liquid superficial velocity. This behavior is explained by variation of the coalescing gas fraction and the reduction in bubble size. A correlation for kLa is proposed. The predicted values deviate within ± 15 % from the experimental values, thus, implying that the equation can be used to predict gas‐liquid mass transfer rates in fibrous bed recycle bioreactors.  相似文献   

10.
Mass transfer characteristics in a rotor‐stator reactor in terms of the overall volumetric mass‐transfer coefficient (Kxa) using the N2‐H2O‐O2 system were investigated. The effects of various operating parameters including rotation speed, liquid volumetric flow rate, and gas volumetric flow rate on Kxa were systematically examined, and a gas‐liquid mass transfer model was established to predict Kxa. Results reveal that Kxa increased with higher rotation speed, liquid volumetric flow rate, and gas volumetric flow rate. The results also confirm that the predicted values of Kxa were in agreement with the experimental values with deviation within 15 %. The results contribute to a better understanding of mass transfer characteristics in rotor‐stator reactors.  相似文献   

11.
Computational fluid dynamics (CFD) models were employed to investigate flow conditions inside a model reactor in which yield stress non‐Newtonian liquid is mobilized using submerged recirculating jets. The simulation results agree well with the experimental results of active volume in the reactor obtained using flow visualization by the authors in a previous study. The models developed are capable of predicting a critical jet velocity (vc) that determines the extent of active volume obtained due to jet mixing. The vc values are influenced both by the rheological properties of the liquid and the nozzle orientation. The liquid with higher effective viscosity leads to higher vc for a downward facing injection nozzle. However, an upward facing injection nozzle along with a downward facing suction nozzle generates enhanced complementary flow fields which overcome the rheological constraints of the liquid and lead to lower vc.  相似文献   

12.
In the present work, a new low‐shear rotating reactor concept was introduced for process intensification of heterogeneous catalytic reactions in cocurrent gas–liquid downflow and upflow packed‐bed reactors. To properly assess potential advantages of this new reactor concept, exhaustive hydrodynamic experiments were carried out using embedded low‐intrusive wire mesh sensors. The effect of the rotational velocity on liquid flow patterns in the bed cross‐section, liquid saturation, pressure drop, and regime transition was investigated. Furthermore, liquid residence time and Péclet number estimated by a stimulus‐response technique and a macro‐mixing model were presented and discussed with respect to the prevailing flow patterns. The results revealed that the column rotation induces different flow patterns in the cross‐section of the packed bed operating in a concurrent downflow or upflow mode. Moreover, the new reactor concept exhibits a more flexible adjustment of pressure drop, liquid saturation, liquid residence time, and back‐mixing at constant flow rates. © 2016 American Institute of Chemical Engineers AIChE J, 63: 283–294, 2017  相似文献   

13.
The hydrodynamic study of a three‐phase airlift (TPAL) bioreactor with an enlarged gas–liquid dual separator was carried out. Different lengths and diameters of the draft tube were tested to show how the design of the separator zone affects the hydrodynamic performance of the TPAL reactor. Ca‐alginate beads with entrapped yeast biomass at different loadings (0, 7, 14 and 21% v/v) were used in order to mimic the solid phase of conventional high cell density systems, such as those with cells immobilized on carriers or flocculating cells. Important information on multiphase flow and distribution of gas and solid phases in the internal‐loop airlift reactor (ALR) with high solids loading was obtained, which can be used for suggesting optimal hydrodynamic conditions in a TPAL bioreactor with high solids loading. It is finally suggested that the ALR with a dual separator and a downcomer to riser cross‐sectional area ratio (AD/AR) ranging from 1.2 to 2.0 can be successfully applied to batch/continuous high cell density systems, where the uniform distribution of solid phase, its efficient separation of particles from the liquid phase, and an improved residence time of air bubbles inside the reactor are desirable. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
Gas dispersion in an airlift reactor focusing on the closure law on turbulent contribution of added mass is presented. A data bank for bubbly flow in an airlift reactor is presented. The liquid velocity is measured by hot film anemometry and gas fraction and velocity are measured with an optical probe. The sensitivity of numerical simulations of gas dispersion to the modeling of turbulent contribution of added mass is shown. Without the turbulent contribution, the bubbles move toward the region where the turbulence is high and the pressure is low. When the turbulent contribution is introduced, the bubble migration towards the low pressure region is counter‐balanced and the void fraction profile is significantly modified. The modeling of the turbulent contribution of added mass is expressed in terms of the turbulent correlations in the gas phase, uGiuGj , that can be related to the Reynolds stress in the liquid phase, uiuj . © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

15.
New experimental results on pressure loss for the single and two‐phase gas‐liquid flow with non‐Newtonian liquids in helical coils are reported. For a constant value of the curvature ratio, the value of the helix angle of the coils is varied from 2.56° to 9.37°. For single phase flow, the effect of helix angle on pressure loss is found to be negligible in laminar flow regime but pressure loss increases with the increasing value of helix angle in turbulent flow conditions. On the other hand, for the two‐phase flow, the well‐known Lockhart‐Martinelli method correlates the present results for all values of helix angle (2.56‐9.37°) satisfactorily under turbulent/laminar and turbulent/turbulent conditions over the following ranges of variables as: 0.57 ≤ n′ ≤ 1; Re′ < 4000; Rel < 4000; Reg < 8000; 8 ≤ x ≤ 1000 and 0.2 ≤ De′ ≤ 1000.  相似文献   

16.
In the present investigation minimum fluidization velocity, Umf, in a two‐phase inverse fluidized bed reactor is determined using low‐density polyethylene and polypropylene particles of different diameters (4,6 and 8 mm) by measuring pressure drop. In a glycerol system Umf decreased gradually with increase in viscosity up to a value of 6.11 mPa s (60%) and on further increase there was a slight increase in Umf. In the case of the glycerol system the Umf was found to be higher when compared to water. In the non‐Newtonian system (carboxymethylcellulose), Umf decreased with increase in concentration in the range of the present study. The Umf was found to be lower when compared to water as liquid phase. The modified gas‐perturbed liquid model was used to predict the minimum fluidization liquid velocity (Ulmf) for Newtonian and non‐Newtonian systems. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
The mixing process is studied in grid‐generated turbulent flow for single‐ and bubbly two‐phase flow systems. Concentration and mixing characteristics in the liquid phase are measured with the aid of a PLIF/PLIF arrangement. A nearly isotropic turbulent flow field is generated at the center of the vertical pipe by using a honeycomb, three grids and a contraction. In two‐phase flow experiments, air bubbles were injected into the flow from a rectangular grid, with mesh size M = 6 mm, which is placed midway between two circular grids each with a mesh size of M = 2 mm. For single‐phase flow, the normalized mean concentration cross‐stream profiles have rather similar Gaussian shapes, and the cross‐stream profiles of the normalized root‐mean‐square (RMS) values of concentration were found to be quite similar. Cross‐stream profiles of the mean concentration, for bubbly two‐phase flow, were also found to be quite similar, but they did not have the Gaussian shape of the profiles for single‐phase flow. Almost self‐similar behavior was also found for the RMS values of the concentration in two‐phase systems. The turbulent diffusion coefficient in the liquid phase was also calculated. At the center of the plume, the flow was found to have a periodic coherent structure, probably of vortex shedding character. Observations showed that the period of oscillation is higher in the case of two‐phase flow than in single‐phase flow.  相似文献   

18.
Three‐dimensional (3‐D) simulations of an internal airlift loop reactor in a cylindrical reference frame are presented, which are based on a two‐fluid model with a revised k‐? turbulence model for two‐phase bubbly flow. A steady state formulation is used with the purpose of time saving for cases with superficial gas velocity values as high as 0.12 m/s. Special 3‐D treatment of the boundary conditions at the axis is undertaken to allow asymmetric gas‐liquid flow. The simulation results are compared to the experimental data on average gas holdup, average liquid velocity in the riser and the downcomer, and good agreement is observed. The turbulent dispersion in the present two‐fluid model has a strong effect on the gas holdup distribution and wall‐peaking behavior is predicted. The CFD code developed has the potential to be applied as a tool for scaling up loop reactors.  相似文献   

19.
A continuous‐flow process for the asymmetric hydrogenation of methyl propionylacetate as a prototypical β‐keto ester in a biphasic system of ionic liquid and supercritical carbon dioxide (scCO2) is presented. An established ruthenium/2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (BINAP) catalyst was immobilised in an imidazolium‐based ionic liquid while scCO2 was used as mobile phase transporting reactants in and products out of the reactor. The use of acidic additives led to significantly higher reaction rates and enhanced catalyst stability albeit at slightly reduced enantioselectivity. High single pass conversions (>90%) and good enantioselectivity (80–82% ee) were achieved in the first 80 h. The initial catalyst activity was retained to 91% after 100 h and to 69% after 150 h time‐on‐stream, whereas the enantioselectivity remained practically constant during the entire process. A total turnover number of ∼21,000 and an averaged space‐time yield (STYav) of 149 g L−1 h−1 were reached in a long‐term experiment. No ruthenium and phosphorus contaminants could be detected via inductively coupled plasma optical emission spectrometry (ICP‐OES) in the product stream and almost quantitative retention by the analysis of the stationary phase was confirmed. A comparison between batch‐wise and continuous‐flow operation on the basis of these data is provided.  相似文献   

20.
Aiming to understand the effect of various parameters such as liquid velocity, surface tension, and wetting phenomena, a Volume‐of‐Fluid (VOF) model was developed to simulate the multiphase flow in high‐pressure trickle‐bed reactor (TBR). As the accuracy of the simulation is largely dependent on mesh density, different mesh sizes were compared for the hydrodynamic validation of the multiphase flow model. Several model solution parameters comprising different time steps, convergence criteria and discretization schemes were examined to establish model parametric independency results. High‐order differencing schemes were found to agree better with the experimental data from the literature given that its formulation includes inherently the minimization of artificial numerical dissipation. The optimum values for the numerical solution parameters were then used to evaluate the hydrodynamic predictions at high‐pressure demonstrating the significant influence of the gas flow rate mainly on liquid holdup rather than on two‐phase pressure drop and exhibiting hysteresis in both hydrodynamic parameters. Afterwards, the VOF model was applied to evaluate successive radial planes of liquid volume fraction at different packed bed cross‐sections. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号