首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A novel design of dual‐frequency dual‐sense circularly polarized (CP) substrate integrated waveguide (SIW) cavity‐backed slot antenna is presented for dual‐band wireless communication systems. The proposed antenna consists of square SIW cavity, asymmetrical bow‐tie‐shaped cross slot and probe feed. Due to use of asymmetrical bow‐tie‐shaped cross slot, circularly polarized wave radiates at two different frequencies with opposite sense of polarizations. The RHCP radiation occurs at (10.45‐10.54) GHz (Lower band) and LHCP occurs at (11.26‐11.34) GHz (Upper band). Moreover, in each band, sense of polarization can be change by changing the feed position. The front to back radiation ratio (FTBRR) is more than 10.5 dB and cross polarization level is lower than ?20 dB in both the bands.  相似文献   

2.
    
In this article, a compact dual layer leaky wave antenna array is simulated and constructed using the substrate integrated waveguide (SIW) based on the TE20 mode at the X‐ and Ku‐bands. The proposed antenna is designed by creating dumbbell‐shaped slots on the upper layer of the SIW. These slots have increased the antenna bandwidth so that the proposed antenna has a bandwidth of 9.5 to 13.7 GHz and a fractional bandwidth of 36%. In addition, to excite the TE20 mode, an SIW power divider is used in the feeding network of the antenna located in the bottom layer. Moreover, the gain and directivity are other advantages of the proposed antenna so that at 12.5 GHz the antenna peak gain reaches to 15.7 dB. Antenna beam scanning angle is from 5° to 81°. This antenna is simulated and analyzed by the CST Microwave Studio software. The obtained results from the antenna test lab confirm the simulation results.  相似文献   

3.
    
In this article, a dual‐polarized low‐profile microstrip patch antenna with U‐ or M‐shaped feed network is presented. The U‐ or M‐shaped feed network is printed on the same layer, which can achieve dual bands (5.3 and 5.8 GHz) and low profile (0.06 λg). Dual polarizations and high isolation are realized by making use of a quasi‐cross‐shaped slot feeding. Moreover, the port isolation is better than 25 dB, and the antenna gain is above 8.4 dBi for the two ports. And the cross‐polarization levels in both E and H planes are better than ‐30 dB for the two polarization ports, respectively. The design is suitable for array application in MIMO system. Details of the proposed design and experimental results are presented and well agreed.  相似文献   

4.
    
A frequency reconfigurable third‐order bandpass filter based on two substrate integrated waveguide (SIW) cavities is presented in this article. The purposed filter consists of a dual‐mode square‐shaped resonator and a triangular‐shaped resonator. In the square‐shaped cavity, four lumped capacitors are loaded as electrical tuning elements in the area where the electric fields of diagonal TE201 and TE102 modes are strongest. And an another capacitor is loaded at the suitable region of the triangular‐shaped cavity. Square‐shaped cavity introduces two transmission zeros and the triangular‐shaped cavity can suppress out‐of‐band spurious modes. The method that combines the resonators with different shapes and multiple modes into an organic whole cannot only achieve synchronous tuning but also have complementary advantages and improve out‐of‐band rejection. To verify its practicality, a SIW reconfigurable bandpass filter is simulated when the capacitance value varies from 0 to 1.4 pF and measured at 0.7, 0.8, and 0.9 pF, respectively. Measured results show that when the center frequency is tuned from 3.42 to 3.52 GHz, the proposed filter exhibits good tuning performance with insertion loss of less than 2.5 dB and return loss of better than 10 dB, which is suitable for fifth‐generation communication system.  相似文献   

5.
    
This short communication presents a substrate integrated waveguide planar cavity slotted antenna array. The proposed antenna array, excited in its TE33 higher mode, incorporates a grounded coplanar‐waveguide (CPW) CPW‐feeding excitation mechanism. The electromagnetic energy is coupled to the air through 3 × 3 slot array etched on top metallic layer. The proposed antenna operates in the X‐band for the frequency range around the 10 to 11 GHz with resonances at 10.4 and 10.8 GHz frequencies. The proposed antenna array was fabricated and tested. Experimental results show good impedance matching with enhanced radiation characteristics, in terms of peak gain, cross‐polarization level, and low back‐radiation. The proposed antenna has the advantages of low‐footprints, lightweight, high gain, low‐cost, and ease of integration with other electronic circuits. With these characteristics, the proposed antenna array can find its applications in compact wireless digital transceivers.  相似文献   

6.
    
A wideband bandpass filter (BPF) is designed based on U‐slotted slow wave half mode substrate integrated waveguide (SW‐HMSIW) cavities. Similar to the substrate integrated waveguide (SIW), the SW‐HMSIW can also achieve a highpass characteristic while the lateral dimensions can be reduced by about 50%. By etching a U‐shape slot on the SW‐HMSIW cavity, a multiple‐mode resonator (MMR) can be realized, which can achieve a wide passband response and make the overall dimension of the filter much more compact. A wide passband, covering from 6.0 GHz to 10.65 GHz with a FBW about 58.13% is achieved. The measured minimum insertion losses including the losses from SMA connectors are 1.1 dB and return losses are better than 10 dB. Besides, the group delay varies between 0.2 and 0.5 ns within the passband. To validate its practicability, a wideband SW‐HMSIW BPF fabricated on a double‐layer printed circuit board (PCB) is designed and examined. The proposed filter has a more than 54% size reduction compared to the other designs reported in open literatures. The measured results have a good agreement with the simulated results. The effective size of the fabricated filter is about 27 mm × 8.55 mm.  相似文献   

7.
    
In this article, a novel design of compact cavity‐backed slot antenna based on substrate integrated waveguide (SIW) technology is presented for dual‐frequency communication services. A single layer printed circuit board is applied to implement the proposed antenna. The bowtie‐ring slot engraved on the SIW square cavity is excited using two orthogonal microstrip feed lines to operate at two distinct frequencies (6.62 GHz and 11.18 GHz). The proposed antenna allows each of these frequencies to be designed independently. A prototype of the proposed cavity‐backed antenna that radiates at both 6.62 GHz and 11.18 GHz is fabricated and measured. The port isolation better than 29.3 dB is achieved by utilizing the transmission zeros (TZs), which are produced due to the orthogonal feed lines, TE110 mode and coupling between the TE120 and TE210 modes. The measured peak gains of the proposed diplexing antenna are 5.77 dBi and 5.81 dBi at lower and upper resonating frequencies, respectively. The proposed dual‐frequency antenna exhibits the front‐to‐back‐ratio (FTBR) and cross‐polarization level greater than 26 dB and 21 dB, respectively, at both resonating frequencies.  相似文献   

8.
    
This article describes a novel aperture‐coupled feed, for the excitation of a cavity‐backed quad‐slot antenna with circular polarization. Firstly, a quad‐slot cavity‐backed antenna with linear polarization (LP) is proposed. Then, a novel aperture‐coupled feed, which is composed of a cross‐shaped coupling aperture and a T‐shaped feeding microstrip line, will be applied to this LP antenna. By differing the lengths of the four radiation slots together with the novel aperture‐coupled feed, 90° phase difference and equal magnitude between the radiations from the two pairs of slots can be generated. As a result, a good performance of axial ratio will be achieved for the proposed antenna. A prototype is fabricated at Ka band for a demonstration. Investigations show that the antenna can present a minimum axial ratio (AR) of only about 0.37 dB, as well as a fractional AR bandwidth of about 0.94%. A relative high gain of 6.9 dBic at 32.1 GHz is also achieved for the prototype. The proposed substrate integrated cavity backed antenna with circularly polarization has great potential to be integrated into millimeter‐wave transceiver modules. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:588–594, 2016.  相似文献   

9.
    
In this article, a compact bandpass filter with a pair of transmission zeros exploiting capacitive loaded cavities is presented. The proposed filter structure is mainly composed of coplanar waveguide (CPW) feeding structures and four substrate integrated waveguide (SIW) resonators. The size of the filter has been greatly reduced due to the capacitive loaded circle metallic septum and the vertical coupling of stacked cavities in three dimensional structures by low temperature co‐fired ceramic technology. The filter not only achieves the advantages of high‐selectivity, a much wider upper stopband bandwidth, but also realizes a miniaturized volume of 3.35 × 2.10 × 0.66 mm3. The simulated and measured results show the bandpass filter achieves a center frequency of 28 GHz with 3 dB fractional bandwidth of 8%. The filter is suitable for application in 5G wireless communication.  相似文献   

10.
    
A single layer single probe‐fed wideband microstrip antenna is presented and investigated. By cutting a U‐slot in the rectangular patch, and by incorporating two identical U‐shaped parasitic patches around both the radiating edges and the nonradiating edges of the rectangular patch, three resonant frequencies are excited to form the wideband performance. Details of the antenna design is presented. The measured and simulated results are in good agreement, the measured impedance bandwidth is GHz ( GHz), or centered at GHz, which covers WLAN GHz ( GHz), WLAN GHz ( GHz), and WIMAX GHz ( GHz) bands. The measured peak gains at the three resonant frequencies are dB, dB, and dB, respectively. An equivalent circuit model which is based on the transmission line theory, the asymmetric coupled microstrip lines theory, and the π‐network theory is established. This equivalent circuit model is used to give an insight into the wideband mechanism of the proposed antenna, and is also used to explain why the three resonant frequencies shift at the variations of different parameters from a physical point of view. The error analysis is given to demonstrate the validity of the equivalent circuit model.  相似文献   

11.
    
In this paper, a half‐mode substrate integrated waveguide (HMSIW) power divider with bandpass response and good frequency selectivity is proposed. The proposed power divider includes input/output microstrip lines, four HMSIW resonators, cross‐coupling circuits, and an isolation resistor. The dual‐band bandpass‐filtering response is obtained by using the dual‐mode slotted HMSIW. To get good frequency selectivity, the input/output cross‐coupling circuits have been used, and several transmission zeros can be observed. A dual‐band filtering‐response HMSIW power divider is designed, fabricated and measured. The total size of the fabricated power divider is 0.58λg × 0.45λg. The measured results show a reasonable agreement with the simulated ones. The measured central operating frequencies of the dual‐band HMSIW power divider are at 2.43 and 3.50 GHz, respectively. The measured 3‐dB fractional bandwidth is about 13.3% and 6.3% in the two passbands, and the measured output isolation is about 20 dB.  相似文献   

12.
    
A novel microstrip filter based on transverse electromagnetic (TEM)‐substrate integrated waveguide (SIW) cavities is firstly proposed in this letter. Compared to the traditional SIW cavities, the TEM‐SIW cavities have more compact size and higher Q value. Then, two bandpass filter adopting TEM‐SIW cavities is designed and one of it is fabricated. Both simulated and measured results are presented. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

13.
    
In this article, a novel design of single layer, compact, multiple input multiple output (MIMO) half‐mode substrate integrated waveguide (HMSIW) cavity backed quad element slot antenna with high front‐to‐back ratio (FTBR) is proposed. The proposed antenna consists of four rectangular SIW cavities with semi‐taper radiating slots. The antenna elements are placed in a fashion to achieve high isolation. This antenna is designed for WLAN vehicular communication system to cover the frequency range of 5.84 GHz to 5.96 GHz. It has high front to back ratio (FTBR) of more than 25 dB without using any external metallic reflector. It has more than 37 dB isolation in between orthogonal elements and more than 24 dB in between parallel elements. The envelop correlation coefficient (ECC) and diversity gain are 0.003 and 9.99 dB respectively in between all the elements. Moreover, the antenna has high gain and efficiency of more than 8 dB and 94%, respectively, in 10 dB impedance bandwidth. It can be tuned in a wide range of frequency.  相似文献   

14.
    
A planar substrate integrated waveguide (SIW) based cavity‐backed self‐triplexing slot antenna is proposed for X‐Ku band applications. The antenna comprises of the SIW cavity, radiating slots, and feeding networks. The radiating slots; that are etched on the upper metallic plane of the SIW, are backed up by the three radiated quarter cavities (QCs). The radiating slots in the respective QCs are of different lengths, excited by three separated orthogonal feed lines to resonate at three different frequencies as 11.01, 12.15, and 13.1 GHz. By fine‐tuning the antenna parameters, an intrinsic input port isolation of better than 26 dB is realized which helps in achieving the self‐triplexing property. The behaviors of individual cavity modes at three resonant frequencies are explained with the help of Z‐parameter. The proposed antenna layout is easy to integrate with the planar circuit. The proposed antenna is fabricated and measured results display a close concern with the simulated results. Moreover, a unidirectional radiation pattern and gain of 5.1, 5.54, and 6.12 dBi at resonant frequencies are realized.  相似文献   

15.
    
A coupled‐line band‐pass filter (BPF) with T‐shaped stub structure is presented. Five transmission poles within the passband and eight deep transmission zeros (TZs) from 0 to 2f0 (f0 denotes filter's center frequency) are realized through input impedance calculations. With the simple T‐shaped structure, the positions of six TZs can be appropriately adjusted to achieve high frequency selectivity and stopband rejection. For demonstration, a BPF prototype centered at 2.05 GHz is designed and fabricated, whose measured rejection levels are of over 45.5 dB at lower stopband and better than 19.5 dB at upper stopband. The simulation and measurement results are in good agreement, which validates the design idea.  相似文献   

16.
    
In this article a novel array antenna composed of untilted slots in the narrow wall of the double‐ridge waveguide, with significantly improved cross‐polarization, is presented. In the first step, suitable radiating elements for designing a linear slot array antenna were created. An untilted slot which is created the narrow wall of the double‐ridge waveguide is suggested to be used as the radiating resonance slot. The concave and convex ridges are located under the untilted slots only. It is shown that the concave and convex double ridge waveguides can produce an orthogonal current distribution in the place of the slots. They are also placed successively to produce the required phase inversion between adjacent slots. The linear array consists of nine uniform resonant untilted slots in the double ridge waveguide and is designed at the frequency of 5 GHz using the normalized conductance of each radiating slot. Analyzing the simulation results shows that cross‐polarization of the designed array was significantly improved, it was also found that the cross‐polarization and the SLL were respectively about ?65 and ?16 dB. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

17.
    
Four‐stage stepped‐impedance resonator (FSSIR) is proposed and its resonant characteristics are analyzed in detail. The formulas of the first four resonances are deduced and the optimization techniques are presented on the basis of the impedance ratios. A quad‐band bandpass filter with third‐order filtering response in each passband is synthesized and designed as a demonstration of the application of the proposed FSSIR. Thanks to the cross‐coupling topology and skew‐symmetrical feeding configuration, multiple transmission zeros have been generated out of the passbands. Additionally, the frequency and the couplings of each passband can be flexibly controlled, respectively.  相似文献   

18.
    
This article presents a simple, compact, and lightweight substrate integrated waveguide (SIW) backed self‐quadruplexing antenna for quad‐band applications. The design procedure is straightforward. Topside of the SIW cavity is modified to form four patches of different lengths which are fed separately by four 50‐Ω microstrip feed lines and operate at 5.14, 5.78, 6.74, and 7.74. It attains 4.1, 4.96, 6.2, and 6.1 peak gain at the above frequencies, respectively. The observed front‐to‐back‐ratio is more than 17.5 dB and the isolation level is above 28 dB. This antenna topology allows to redesign each resonant frequencies as per application requirement using a single parameter and without disturbing other performances. Design guidelines for developing the proposed antenna are provided. A prototype antenna is fabricated using RT‐Duroid (5870) substrate and characterized for validation. The proposed antenna is suitable for handheld microwave devices for C‐band communication.  相似文献   

19.
    
A balanced wideband bandpass filter (BPF) with a high frequency selectivity, controllable bandwidth, and good common‐mode (CM) suppression based on nested split‐ring resonators (SRRs) is proposed in this article. The proposed nested SRRs are applied to form three transmission poles (TPs) that can achieve a wide differential‐mode (DM) passband centered at 3.0 GHz. Meanwhile, two transmission zeros (TZs) are generated to realize a high frequency selectivity of the DM passband. Moreover, TPs and TZs can be quasi‐independently controlled by changing the physical lengths of SRRs and the gaps between them, which can greatly improve the flexibility and practicality of the design. The proposed balanced BPF is fed by balanced microstrip‐slotline (BMS) transition structures. For the CM signals, the BMS transition structures can achieve a good wideband CM suppression without affecting the DM ones, thereby simplifying the design procedure. In order to validate its practicability, a balanced wideband BPF is fabricated and a good agreement between the simulated and measured results is obtained.  相似文献   

20.
    
In this article, a multilayered substrate integrated waveguide (SIW) Butler matrix beam‐forming network is proposed, designed, and demonstrated at 24 GHz for automotive radar system applications. The proposed low‐cost SIW structure can be used to develop a highly integrated multibeam antenna platform in automotive radar systems and other applications. In this structure, an SIW H‐plane coupler is optimized with an H‐plane slit to provide the required phase shift. A class of SIW E‐plane 3‐dB couplers in doubled layer substrate are studied and designed as the fundamental building blocks to avoid crossovers usually required in the construction of a Butler matrix. A 4 × 4 matrix is investigated and designed, which shows excellent performance over 22–26 GHz frequency band. Two types of antenna are tested with the proposed matrix scheme. First, an antipodal linearly tapered slot antenna (ALTSA) is incorporated into the Butler matrix to verify the broadband performances. Second, a longitudinal slotted waveguide antenna array is examined to generate radiation patterns in the broadside direction. Measured results agree well with simulated counterparts, thus validating the proposed multilayer SIW design concepts. In the next sections, the use as feeding networks for providing the reconfigurability operation of an antenna will be illustrated. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号