首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
A fully automated three‐dimensional observation of single bubble breakup trajectories in a stirred tank is demonstrated to gain unbiased and statistically relevant information about the breakup process. The mother bubble size is kept constant, independently of the stirring rate. The investigated parameter in this work is the power input. Three‐dimensional bubble breakup trajectories and heat maps for the initial breakup location probability for the bottom and side views are provided. The influence of the stirrer blade angle position, at the moment of bubble detachment from the capillary, on the breakup probability is analyzed. The breakup positions are linked to the current flow field, related to the stirrer blade angle, within the tank.  相似文献   

2.
The deformation of moving slug bubbles and its influence on the bubble breakup dynamics in microchannel were studied. Three bubble morphologies were found in the experiment: slug, dumbbell and grenade shapes. The viscosity effect of continuous phase aggravates the velocity difference between the fluid near the wall and the bubble, resulting in that the continuous phase near the bubble head flows towards and squeezes the bubble tail, which causes the deformation of bubbles. Moreover, the experimental results show that the deformation of bubbles could significantly prolong the bubble breakup period at the downstream Y-junction. There exists the critical capillary number CaCr for the asymmetric breakup of grenade bubbles, CaCr increases with the rise of flow rate and viscosity of the continuous phase.  相似文献   

3.
The bubble breakup after collision with a vortex ring was validated as source of breakup parameters for population balance modeling. This system was chosen as a deterministic alternative to the stochastic nature of bubble breakup studies under turbulent flow. The vortex ring was characterized by combining experimental visualization and numerical simulations. Breakup frequency, mean number of daughter bubbles, and its size distribution were obtained by high‐speed camera recording of the collision process. The dependence of breakup parameters on the size of the mother bubble and Weber number was determined.  相似文献   

4.
Bubble breakup with permanent obstruction in an asymmetric microfluidic T‐junction is investigated experimentally. The breakup process of bubbles can be divided into three stages: squeezing, transition, and pinch‐off stages. In the squeezing stage, the thinning of the bubble neck is mainly controlled by the velocity of the fluid flowing into the T‐junction, and the increase of the liquid viscosity can promote this process. In the transition stage, the minimum width of bubble neck decreases linearly with time. In the pinch‐off stage, the effect of the velocity of the fluid flowing into the T‐junction on the thinning of the bubble neck becomes weaker, and the increase of the liquid viscosity would delay this process. The evolution of the minimum width of the bubble neck with the remaining time before the breakup can be scaled by a power–law relationship. The bubble length has little influence on the whole breakup process of bubbles. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1081–1091, 2015  相似文献   

5.
Gas–aqueous liquid–oil three‐phase flow was generated in a microchannel with a double T‐junction. Under the squeezing of the dispersed aqueous phase at the second T‐junction (T2), the splitting of bubbles generated from the first T‐junction (T1) was investigated. During the bubble splitting process, the upstream gas–oil two‐phase flow and the aqueous phase flow at T2 fluctuate in opposite phases, resulting in either independent or synchronous relationship between the instantaneous downstream and upstream bubble velocities depending on the operating conditions. Compared with two‐phase flow, the modified capillary number and the ratio of the upstream velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. These results provide an important guideline for designing microchannel structures for a precise manipulation of gas–liquid–liquid three‐phase flow which finds potential applications among others in chemical synthesis. © 2017 American Institute of Chemical Engineers AIChE J, 63: 376–388, 2018  相似文献   

6.
In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends (44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rectangular meandering microchannel are systematically conducted. Based on considerable experimental data, quantitative analyses for the influences of two important characteristic times, liquid phase physical properties and aspect ratio are made on the prediction criteria for the bubble/slug length of Taylor flow in a meandering microchannel. A simple principle is suggested to predict the bubble formation period by using the information of Rayleigh time and capillary time for six gas-liquid systems with average deviation of 10.96%. Considering physical properties of the liquid phase and cross-section configuration of the rectangular mcirochannel, revised scaling laws for bubble length are established by introducing Ca, We, Re and W/h whether for the squeezing-driven or shearing-driven of bubble break. In addition, a simple principle in terms of Garstecki-type model and bubble formation period is set-up to predict slug lengths. A total of 107 sets of experimental data are correlated with the meandering microchannel and operating range:0.001 < CaTP < 0.05, 0.06 < WeTP < 9.0, 18 < ReTP < 460 using the bubble/slug length prediction equation from current work. The average deviation between the correlated data and the experimental data for bubble length and slug length is about 9.42% and 9.95%, respectively.  相似文献   

7.
The dynamics of multiple horizontal bubbles rising from different orifice arrangements in shear‐thinning fluids was simulated numerically by three‐dimensional Volume of Fluid method. The effects of bubble size, rheological properties of shear‐thinning fluids, and orifice structure arrangements on multiple bubbles interaction and coalescence were analyzed, and the mechanisms of bubble coalescence and breakup were fully discussed and elucidated. The variation of bubble rising velocity during coalescence process and freely rising processes for different orifice arrangements was also deeply investigated. The critical initial horizontal intervals for coalescence of multiple horizontal bubbles with various orifice arrangements were attained by simulation, which could serve as the critical criterion of bubble coalescence or noncoalescence. Furthermore, the critical bubble interval was predicted based on the film drainage model, the prediction accords well with the simulation result and is quite conducive for the design and optimization of perforated gas–liquid contact equipment. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3528–3546, 2015  相似文献   

8.
This article presents numerical simulation results for the deformation and breakup of bubbles in homogeneous turbulence under zero gravity conditions. The lattice Boltzmann method was used in the simulations. Homogeneous turbulence was generated by a random stirring force that acted on the fluid in a three-dimensional periodic box. The grid size was sufficiently small that the smallest scales of motion could be simulated for the underlying bubble-free flow. The minimum Weber number for bubble breakup was found to be about 3. Bubble breakup was stochastic, and the average time needed for breakup was much larger for small Weber numbers than for larger Weber numbers. For small Weber numbers, breakup was preceded by a long period of oscillatory behavior during which the largest linear dimension of the bubble gradually increased. For all Weber numbers, breakup was preceded by a sudden increase in the largest linear dimension of the bubble. When the Weber number exceeded the minimum value, the average surface area increased by as much as 80%.  相似文献   

9.
张华海  王悦琳  李邦昊  王铁峰 《化工学报》2021,72(12):5936-5954
综述了充分发展湍流中气泡破碎的机理和模型,将其机理归纳为湍流涡碰撞、黏性剪切、尾涡剪切脱落过程和界面不稳定性四类。对文献中气泡破碎速率和子气泡大小分布的预测模型进行了系统总结。分析讨论了现有气泡破碎模型的发展和局限性,并提出了未来的发展方向。同时,也综述了湍流中单气泡破碎的实验研究,依据产生湍流的方法归纳为四种情况:增大液体流速产生湍流,采用内构件产生湍流,搅拌产生湍流,以及圆锥反应器结合搅拌产生湍流。总结了现有气泡破碎实验的进展和局限,并进行了分析和展望。最后,通过将文献中气泡破碎速率模型预测值和实验数据进行对比,表明文献中多个破碎模型已经有了较好的预测能力。  相似文献   

10.
研究了Y型微通道吸附型纳米颗粒稳定气泡的完全阻塞破裂的动力学,破裂过程可划分为挤压阶段和快速夹断阶段,两阶段内无量纲气泡最小颈部宽度与时间均呈幂率关系。气泡破裂过程的颈部动力学表明颗粒的存在并不影响两阶段转变的临界颈部宽度,但吸附在气泡表面的颗粒层会减弱挤压阶段中连续相对气泡颈部的挤压作用,以及快速夹断阶段角区中连续相液体回流对气泡的挤压作用,进而阻碍气泡颈部的形变,延长了气泡的破裂过程。纳米颗粒稳定的气泡的指前因子m及幂率指数α均小于常规气泡,但其差值随着毛细管数Ca和气泡长度l0的增大而减小,颗粒对气泡破裂过程的影响逐渐减弱。此外,纳米颗粒稳定的气泡的头部曲率略小于常规气泡,颗粒对完全阻塞破裂过程气泡头部动力学的影响可以忽略。  相似文献   

11.
This study aims to investigate the breakup of slender bubbles in non‐Newtonian fluids in microfluidic flow‐focusing devices using a high‐speed camera and a microparticle image velocimetry (micro‐PIV) system. Experiments were conducted in 400‐ and 600‐μm square microchannels. The variation of the minimum width of gaseous thread with the remaining time before pinch‐off could be scaled as a power‐law relationship with an exponent less than 1/3, obtained for the pinch‐off of bubbles in Newtonian fluids. The velocity field and spatial viscosity distribution in the liquid phase around the gaseous thread were determined by micro‐PIV to understand the bubble breakup mechanism. A scaling law was proposed to describe the size of bubbles generated in these non‐Newtonian fluids at microscale. The results revealed that the rheological properties of the continuous phase affect significantly the bubble breakup in such microdevices. © 2012 American Institute of Chemical Engineers AIChE J,, 2012  相似文献   

12.
The dynamics and breakup of bubbles in swirl-venturi bubble generator (SVBG) are explored in this work. The three-dimensional movement process and breakup phenomena of bubbles are captured by one high-speed camera system with two cameras while the distribution of swirling flow field is recorded through Particle Image Velocimetry technology. It is revealed that bubbles have two motion trajectories, which are deeply related to bubble breakup. One trajectory is that mother bubble moves upward in an axial direction of the SVBG to the diverging section, and the other trajectory is that mother bubble rotates obliquely upward to another side-wall along the radial direction. Meanwhile, binary breakup, shear-off-induced breakup, static erosive breakup, and dynamic erosive breakup are observed. For relatively high liquid Reynolds number, vortex flow regions are extended and the bubble size is reduced. Furthermore, it is worth noting that the number of microbubbles increases significantly for intensive swirling flow.  相似文献   

13.
The bubble breakups in a jet bubbling reactor are captured using a high-speed camera and the velocity field is measured by particle image velocimetry. Two typical breakup patterns, jet breakup and jet-vortex breakup are observed. The breakup time interval of the jet-vortex breakup is two orders of magnitude higher than the jet breakup. The probability of the jet-vortex breakup and the jet breakup accounting in the total breakup events increases and decreases with the jet velocity and the mother bubble size, respectively. The bubble breakup region increases with the jet velocity. The bubble breakup frequency increases with the turbulent dissipation rate and the mother bubble size. The average number of daughter bubbles increases with the Weber number. An L-shaped daughter bubble size distribution is observed. Empirical correlations are established for the bubble breakup frequency, the average number of daughter bubbles and daughter bubble size distribution, and fitted well with the experimental results.  相似文献   

14.
The aim of this work is to investigate experimentally the bubble breakup in a microfluidic T-junction divergence using a high-speed digital camera and a micro-Particle Image Velocimetry (micro-PIV) system. The breakup and non-breakup of N2 bubbles in glycerol–water mixtures with several concentrations of sodium dodecyl sulphate (SDS) as surfactant were studied with capillary number ranging from 0.001 to 0.1. The cross section of PMMA square microchannel is 400 μm wide and 400 μm deep. Four various flow patterns were observed at the T-junction by changing gas and liquid flow rates. The dynamics of three various types of symmetric breakup of bubbles were investigated. The symmetric breakup of bubbles type I is mainly controlled by the augmented pressure in liquid phase. The symmetric breakup of bubbles type II is controlled by both the increased pressure and viscous forces. In the symmetric breakup of bubbles type III, a scaling law for the minimum bubble neck and the remaining time during bubble breaking process were found. The transitions between breakup and non-breakup of bubbles were investigated, and a power–law relationship between bubble extension and capillary number was proposed to predict the transitions between adjacent regimes. Our experimental results reveal that the bubble breakup in a microfluidic T-junction divergence is similar to the droplet behaviours in such a device ( [Jullien et al., 2009] , [Leshansky and Pismen, 2009] and [Link et al., 2004] ).  相似文献   

15.
To account for the effect of liquid viscosity, the bubble breakup model considering turbulent eddy collision based on the inertial subrange turbulent spectrum was extended to the entire turbulent spectrum that included the energy-containing, inertial, and energy-dissipation subranges. The computational fluid dynamics-population balance model coupled model was modified to include this extended bubble breakup model for simulations of a bubble column. The effect of turbulent energy spectrum on the bubble breakup and hydrodynamic behaviors was studied in a bubble column under different liquid viscosities. The results showed that when the liquid viscosity was <80 mPa s, the bubble breakup and hydrodynamics were almost independent on the turbulent spectrum. At liquid viscosity >80 mPa s, the bubble breakup rate and gas holdup were significantly under-predicted when the inertial turbulent spectrum was used, and when using the entire turbulent spectrum the predictions were more consistent with experimental data.  相似文献   

16.
The deformation and breakup behaviors of droplets containing polymer are investigated by high-speed photography to reveal the mechanism of electric field collapse when treating the emulsion containing polymer. The results show the electric field collapse process caused by droplet breakup consists of three steps. First, the droplet containing polymer ejects liquid filament under strong electric field. Second, the liquid filament is continuously stretched until it touches positive and negative electrodes. Finally, the severe Joule heating effect appears because the strong electric current flows through the liquid filament. The release of a large amount of heat causes the formation, expansion, and collapse of bubble, resulting in the fracture of liquid filament and the collapse of electric field. The increase of polymer concentration strengthens the Joule heating effect and enlarges the influence scope of bubble expansion and collapse. These findings provide significant guidance for the stable operation of electric dehydrator.  相似文献   

17.
Pressure has a significant effect on bubble breakup, and bubbles and droplets have very different breakup behaviors. This work aimed to propose a unified breakup model for both bubbles and droplets including the effect of pressure. A mechanism analysis was made on the internal flow through the bubble/droplet neck in the breakup process, and a mathematical model was obtained based on the Young–Laplace and Bernoulli equations. The internal flow behavior strongly depended on the pressure or gas density, and based on this mechanism, a unified breakup model was proposed for both bubbles and droplets. For the first time, this unified breakup model gave good predictions of both the effect of pressure or gas density on the bubble breakup rate and the different daughter size distributions of bubbles and droplets. The effect of the mother bubble/droplet diameter, turbulent energy dissipation rate and surface tension on the breakup rate, and daughter bubble/droplet size distribution was discussed. This bubble breakup model can be further used in a population balance model (PBM) to study the effect of pressure on the bubble size distribution and in a computational fluid dynamics‐population balance model (CFD‐PBM) coupled model to study the hydrodynamic behaviors of a bubble column at elevated pressures. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1391–1403, 2015  相似文献   

18.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column.  相似文献   

19.
Two-dimensional axisymmetric Eulerian/Eulerian simulations of two-phase (gas/liquid) transient flow were performed using a multiphase flow algorithm based on the finite-volume method. These numerical simulations cover laboratory scale bubble columns of different diameters, operated over a range of superficial gas velocities ranging from the bubbly to the churn turbulent regime. The bubble population balance equation (BPBE) is implemented in the two-fluid model that accounts for the drag force and employs the modified k-ε turbulence model in the liquid phase. Several available bubble breakup and coalescence closures are tested. Quantitative agreements between the experimental data and simulations are obtained for the time-averaged axial liquid velocity profiles, as well as for the kinetic energy profiles, only when model predicted breakup rate is increased by a factor of ten to match the coalescence rate. The calculated time-averaged gas holdup profiles deviate in shape from the measured ones and suggest that full three-dimensional simulation is needed. Implementation of BPBE leads to better agreement with data, especially in the churn-turbulent flow regime, compared to the simulation based on an estimated constant mean bubble diameter. Differences in the predicted interfacial area density, with and without BPBE implementation, are significant. The choice of bubble breakup and coalescence closure does not have a significant impact on the simulated results as long as the magnitude of breakup is increased tenfold.  相似文献   

20.
An image processing technique was used to study dominant bubble mechanisms in a two-dimensional packed-bed at pore level under the bubbly flow regime. Bubble breakup and coalescence were identified as dominant mechanisms using a large number of image samples. Two types of coalescence mechanisms were identified that occur due to compression and deceleration associated with the bubbles and three breakup mechanisms were identified that are result of liquid shear force, bubble acceleration, and bubble impact. Data on various two-phase parameters, such as local void fraction, bubble velocity, size, number, and shape were obtained from the images. Results indicated that when a flow regime changed from bubbly to either trickling or pulsing flow, the number of average sized bubbles significantly decreased and the shape of the majority of the bubbles was no longer spherical. Although a mean bubble velocity of all sized bubbles was uniform for given gas and liquid superficial velocities, individual bubble velocities were quite different depending on the bubble location in the pore. The present bubble size distributions were compared with previous studies and the results on bubble size are in general agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号