首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The efficacy of controlling Escherichia coli O157:H7 in ground beef patties by combining irradiation with vacuum packaging or modified atmosphere packaging (MAP) was investigated. Fresh ground beef patties were inoculated with a five-strain cocktail of E. coli O157:H7 at 5 log CFU/g. Single patties, packaged with vacuum or high-CO(2) MAP (99.6% CO(2) plus 0.4% CO), were irradiated at 0 (control), 0.5, 1.0, or 1.5 kGy. The D(10)-value for this pathogen was 0.47 ± 0.02 kGy in vacuum and 0.50 ± 0.02 kGy in MAP packaging. Irradiation with 1.5 kGy reduced E. coli O157:H7 by 3.0 to 3.3 log, while 0.5 and 1.0 kGy achieved reductions of 0.7 to 1.0, and 2.0 to 2.2 log, respectively. After irradiation, the numbers of survivors of this pathogen on beef patties in refrigerated storage (4°C) did not change significantly for 6 weeks. Temperature abuse (at 25°C) resulted in growth in vacuum-packaged patties treated with 0.5 and 1.5 kGy, but no growth in MAP packages. This study demonstrated that combining irradiation with MAP was similar in effectiveness to irradiation with vacuum packaging for control of E. coli O157:H7 in ground beef patties during refrigerated storage. However, high-CO(2) MAP appeared to be more effective after temperature abuse.  相似文献   

2.
At 55 to 70 degrees C, thermal inactivation D-values for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes were 19.05 to 0.038, 43.10 to 0.096, and 33.11 to 0.12 min, respectively, in ground turkey and 21.55 to 0.055, 37.04 to 0.066, and 36.90 to 0.063 min, respectively, in ground beef. The z-values were 5.73, 5.54, and 6.13 degrees C, respectively, in ground turkey and 5.43, 5.74, and 6.01 degrees C, respectively, in ground beef. In both ground turkey and beef, significant (P < 0.05) differences were found in the D-values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes. At 65 to 70 degrees C, D-values for E. coli O157:H7, Salmonella, and L. monocytogenes were also significantly (P < 0.05) different between turkey and beef. The obtained D- and z-values were used in predicting process lethality of the pathogens in ground turkey and beef patties cooked in an air impingement oven and confirmed by inoculation studies for a 7-log (CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.  相似文献   

3.
The survival of Escherichia coli O157:H7 and of a nonpathogenic control strain of E. coli was monitored in raw ground beef that was stored at 2 degrees C for 4 weeks, -2 degrees C for 4 weeks, 15 degrees C for 4 h and then -2 degrees C for 4 weeks, and -20 degrees C. Irradiated ground beef was inoculated with one E. coli control strain or with a four-strain cocktail of E. coli O157:H7 (ca. 10(5) CFU/g), formed into patties (30 to 45 g), and stored at the appropriate temperature. The numbers of the E. coli control strain decreased by 1.4 log 10 CFU/g, and pathogen numbers declined 1.9 log 10 CFU/g when patties were stored for 4 weeks at 20 degrees C. When patties were stored at -2 degrees C for 4 weeks, the numbers of the E. coli control strain and the serotype O157:H7 strains decreased 2.8 and 1.5 log 10 CFU/g, respectively. Patties stored at 15 degrees C for 4 h prior to storage at -2 degrees C for 4 weeks resulted in 1.6 and 2.7 log 10-CFU/g reduction in the numbers of E. coli and E. coli O157:H7, respectively. Storage of retail ground beef at 15 degrees C for 4 h (tempering) did not result in increased numbers of colony forming units per gram, as determined with violet red bile, MRS lactobacilli, and plate-count agars. Frozen storage (-20 degrees C) of ground-beef patties that had been inoculated with a single strain of E. coli resulted in approximately a 1 to 2 log 10-CFU/g reduction in the numbers of the control strain and individual serotype O157:H7 strains after 1 year. There was no significant difference between the survival of the control strain and the O157:H7 strains, nor was there a difference between O157:H7 strains. These data demonstrate that tempering of ground-beef patties prior to low-temperature storage accelerated the decline in the numbers of E. coli O157:H7.  相似文献   

4.
The objective of this study was to evaluate the thermal inactivation of Escherichia coli O157:H7 in ground beef cooked to an internal temperature of 71.1 degrees C (160 degrees F) under conditions simulating consumer-style cooking methods. To compare a double-sided grill (DSG) with a single-sided grill (SSG), two different cooking methods were used for the SSG: for the one-turnover (OT-SSG) method, a patty was turned once when the internal temperature reached 40 degrees C, and for the multiturnover (MT-SSG) method, a patty was turned every 30 s. Patties (100 g, n = 9) inoculated with a five-strain mixture of E. coli O157: H7 at a concentration of 10(7) CFU/g were cooked until all three temperature readings (for two sides and the center) for a patty were 71.1 degrees C. The surviving E. coli O157:H7 cells were enumerated on sorbitol MacConkey (SMAC) agar and on phenol red agar base with 1% sorbitol (SPRAB). The order of the cooking methods with regard to the cooking time required for the patty to reach 71.1 degrees C was as follows: DSG (2.7 min) < MT-SSG (6.6 min) < OT-SSG (10.9 min). The more rapid, higher-temperature cooking method was more effective (P < 0.01) in destroying E. coli O157:H7 in ground beef. E. coli O157:H7 reduction levels were clearly differentiated among treatments as follows: OT-SSG (4.7 log10 CFU/g) < MT-SSG (5.6 log10 CFU/g) < DSG (6.9 log10 CFU/g). Significantly larger numbers of E. coil O157:H7 were observed on SPRAB than on SMAC agar. To confirm the safety of ground beef cooked to 71.1 degrees C, additional patties (100 g, n = 9) inoculated with lower concentrations of E. coli O157:H7 (10(3) to 10(4) CFU/g) were tested. The ground beef cooked by the OT-SSG method resulted in two (22%) of nine samples testing positive after enrichment, whereas no E. coli O157:H7 was found for samples cooked by the MT-SSG and DSG methods. Our findings suggest that consumers should be advised to either cook ground beef patties in a grill that cooks the top and the bottom of the patty at the same time or turn patties frequently (every 30 s) when cooking on a grill that cooks on only one side.  相似文献   

5.
The antibacterial activity of lactoferricin B on enterohemorrhagic Escherichia coli O157:H7 in 1% peptone medium and ground beef was studied at 4 and 10 degrees C. In 1% peptone medium, 50 and 100 microg of lactoferricin B per ml reduced E. coli O157:H7 populations by approximately 0.7 and 2.0 log CFU/ml, respectively. Studies comparing the antibacterial effect of lactoferricin B on E. coli O157:H7 in 1% peptone at pH 5.5 and 7.2 did not reveal any significant difference (P > 0.5) at the two pH values. Lactoferricin B (100 microg/g) reduced E. coli O157:H7 population in ground beef by about 0.8 log CFU/g (P < 0.05). No significant difference (P > 0.5) was observed in the total plate count between treatment and control ground beef samples stored at 4 and 10 degrees C. The antibacterial effect of lactoferricin B on E. coli O157:H7 observed in this study is not of sufficient magnitude to merit its use in ground beef for controlling the pathogen.  相似文献   

6.
Commercial allyl isothiocyanate (AIT) was examined for its ability to reduce numbers of Escherichia coli O157:H7 inoculated in fresh ground beef packaged under nitrogen and stored refrigerated or frozen. A five-strain cocktail of E. coli O157:H7 containing 3 or 6 log10 cfu/g was inoculated into 100 g ground beef and formed into 10x1-cm patties. A 10-cm diameter filter paper disk treated with AIT suspended in sterile corn oil was placed on top of a single patty. One patty and paper disk were placed in a bag of Nylon/EVOH/PE with O2 permeability of 2.3 cm3 m(-2) 24 h atm at 23 degrees C. The bags were back-flushed with 100% nitrogen, heat-sealed and stored at 10, 4 and -18 degrees C for 8, 21 or 35 days, respectively. During storage, the AIT levels in the package headspaces were determined by gas liquid chromatography, and mesophilic bacteria and E. coli O157:H7 were counted. The mesophilic aerobic bacteria in ground beef patties were largely unaffected by the addition of AIT. At an initial population of 3 log10 cfu/g, E. coli O157:H7 was reduced by AIT to undetectable levels after 18 days at 4 degrees C or 10 days at -18 degrees C. In samples inoculated with 6 log10 cfu/g, a >3 log10 reduction of E. coli O157:H7 was observed after 21 days at 4 degrees C, while a 1 log10 reduction was observed after 8 and 35 days at 10 and -18 degrees C, respectively. The final AIT concentrations in the headspaces after storage at 10, 4, and -18 degrees C were 444, 456, and 112 microg/ml at 8, 21, and 35 days, respectively. Results showed that AIT can substantially reduce numbers of E. coli O157:H7 in fresh ground beef during refrigerated or frozen storage.  相似文献   

7.
Undercooked ground beef is a leading vehicle for acquiring Escherichia coli O157:H7 infections through consumption of foods. Studies have been performed to determine the effect of freezing and the combined effect of freezing and addition of a mixture of 20% acidic calcium sulfate (final concentration of 0.4% in ground beef) and 10% lactic acid (final concentration of 0.2% in ground beef) (ACS-LA) on the thermal sensitivity of E. coli O157:H7 in ground beef. Five strains of E. coli O157: H7 were separately inoculated into ground beef and held at 5 degrees C for up to 10 days or -20 degrees C for up to 3 weeks then heated at 57, 60, 62.8, 64.3, and 68.3 degrees C to determine rates of thermal inactivation. Results revealed that D-values (decimal reduction times) at equivalent temperatures for four of five E. coli O157:H7 strains were less in the previously frozen than in the refrigerated ground beef and that strains isolated from ground beef in 1993 and 1994 were generally more sensitive to thermal inactivation than those isolated in 1999 and 2000. Only one strain of E. coli O157:H7 was used to determine the effect of ACS-LA in previously frozen or refrigerated ground beef on rates of thermal inactivation. The addition of ACS-LA to ground beef at 20 ml/kg increased the thermal sensitivity of E. coli O157:H7 in both previously frozen and refrigerated ground beef, with greatest rates of inactivation occurring in previously frozen ground beef containing ACS-LA. D-values at 57 degrees C obtained for E. coli O157:H7 in previously refrigerated and frozen ground beef containing ACS-LA and ACS-LA diluted by half were significantly (P < 0.05) less than those obtained in ground beef with no ACS-LA added. D-values at 60 and 62.8 degrees C were consistently less in ACS-LA treated ground beef, but for most treatments the results were not significantly (P > 0.05) different than the controls. Results revealed that the addition of ACS-LA to ground beef, whether frozen or refrigerated, can reduce the temperature or time required to kill E. coli O157:H7 during heating.  相似文献   

8.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

9.
Ground beef products are susceptible to contamination with Escherichia coli O157:H7. The objective of this study was to examine the effect of salt, sodium pyrophosphate (SPP), and sodium lactate on the probability of growth of E. coli O157:H7 in ground beef under a temperature abuse condition. Ground beef containing 0 to 2.25% salt, 0 to 0.5% SPP, and 0 to 3% lactate was inoculated with a four-strain mixture of E. coli O157:H7, vacuum packaged, and stored at 10°C for 15 days. A total of 25 combinations of the three additives, each with 20 samples, were tested. A logistic regression was used to model the probability of growth of E. coli O157:H7 (with a 1.0-log CFU/g increase during storage) as a function of salt, SPP, and lactate. The resultant probability model indicated that lactate at higher concentrations decreased the probability of growth of E. coli O157:H7 in ground beef, and the effect was more pronounced at higher salt concentrations. At salt concentrations below 1.3%, the increase of SPP concentration marginally increased the growth probabilities of E. coli O157:H7. The model illustrated the effect of salt, SPP, and lactate on the growth probabilities and growth or no-growth behavior of E. coli O157:H7 in ground beef and can be used to improve the microbial food safety of ground beef products.  相似文献   

10.
The effect of single- and multiple-cycle high-pressure treatments on the survival of Escherichia coli CECT 4972, a strain belonging to the O157:H7 serotype, in ground beef was investigated. Beef patties were inoculated with 10(7) CFU/g E. coli O157:H7, and held at 4 degrees C for 20 h before high-pressure treatments. Reduction of the E. coli O157:H7 population by single-cycle treatments at 400 MPa and 12 degrees C ranged from 0.82 log CFU/g for a 1-min cycle to 4.39 log CFU/g for a 20-min cycle. Multiple-cycle treatments were very effective, with four 1-min cycles at 400 MPa and 12 degrees C reducing the E. coli O157:H7 population by 4.38 log CFU/g, and three 5-min cycles by 4.96 log CFU/g. The color parameter L* increased significantly with high-pressure treatments in the interior and the exterior of beef patties, whereas a* decreased in the interior, and b* increased in the exterior-changes that might diminish consumer acceptance of the product. Kramer shear force and energy were generally higher in pressurized than in control ground beef. Maximum values for these texture parameters, which corresponded to tougher patties, were reached after one 10-min cycle in the case of single-cycle treatments or two 5-min cycles in the case of multiple-cycle treatments. High-pressure treatments had no significant effect on Warner-Bratzler shear force.  相似文献   

11.
A ground beef patty processor detected Escherichia coli O157:H7 in five production lots during routine testing with polymerase chain reaction (PCR) technology. This finding stimulated research to determine the incidence and potential entry points of the pathogen during processing. One of these lots (53,960 kg) was divided into 71 pallets (760 kg each) of food service ground beef patties. Ten cartons (19 kg each) were removed from each pallet, for a total of 710 cartons. Four patties were taken from each carton and subdivided to provide comparable samples for E. coli O157:H7 analyses by three different laboratories. Two laboratories employed different immunoassay tests, and one used PCR to screen samples. One sample set was analyzed for aerobic plate, coliform, and E coli Biotype I counts to determine if any relationship existed between these microbial groups and the incidence of E. coli O157:H7. For 73 samples, presumptive positive results for E. coli O157:H7 were obtained by one or more methods. For 48 of these 73 samples, positive results for the pathogen were culture confirmed. The largest number (29) of culture-confirmed positive E. coli O157:H7 results were detected by PCR. Most positive results were obtained during a short segment of processing. All culture-confirmed E. coli O157:H7 strains were further characterized by two genetic subtyping techniques, resulting in two to four different patterns, depending on the subtyping procedure employed. For any sample tested, the aerobic plate count was < 3.0 log CFU/g, and coliform and E. coli Biotype I counts were < or = 1.00 log CFU/g. The results of this study suggest that most positive samples were associated with a contaminated batch of raw material introduced just before the 1725- to 1844-h processing segment. These results also indicate that more aggressive sampling plans and genetic screening technologies such as PCR may be used to better detect low levels of E. coli O157:H7 in ground beef products.  相似文献   

12.
An experiment was conducted to determine the effects of the dark, firm, and dry (DFD) condition of beef on growth of the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Listeria monocytogenes Scott A in ground beef. Longissimus muscles from a DFD carcass (pH = 6.45) and normal carcass (N; pH = 5.64) were ground and samples obtained (100 and 0% DFD, respectively). Equal amounts of the 0 and 100% DFD ground samples were mixed to obtain 50% DFD samples. Inoculated 0, 50, and 100% DFD samples were packaged into oxygen-permeable overwrap and stored at 10 degrees C for E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A or at 22 degrees C for E. coli O157:H7. Growth characteristics of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A did not differ (P > 0.05) between 0 and 100% DFD. Results indicated that the DFD beef used in this study was no more susceptible to growth of E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes Scott A than N beef.  相似文献   

13.
This study was undertaken to determine whether the glucosinolates naturally present in non-deheated mustard flour could serve as a source of allyl and other isothiocyanates in sufficient quantity to kill Escherichia coli O157:H7 inoculated in ground beef at three different levels, during refrigerated storage of the meat under nitrogen. Mustard flour was mixed at 5%, 10% or 20% (w/w) with freshly ground beef, then the beef was inoculated with a cocktail of five strains of E. coli O157:H7 at either 3, 6 or < or =1.6 log10 cfu/g. The ground beef was formed into 100 g patties and each was placed in a bag of Nylon/EVOH/PE, which was back-flushed with 100% N2, heat-sealed and stored at 4 degrees C for < or =21 days. During storage, the allyl isothiocyanate (AIT) levels in package headspaces were determined by gas liquid chromatography. By 21 days, the levels present in treatments were not significantly different. After 21 days storage, there were 0.5, 3 and 5.4 log10 decreases in numbers of E. coli O157:H7 from the initial levels of 6 log10 cfu/g in meat containing 5%, 10% and 20% mustard flour, respectively. When inoculated at 3 log10 cfu/g, E. coli O157:H7 was reduced to undetectable levels after 18, 12 and 3 days with 5%, 10% and 20% mustard flour, respectively. When immunomagnetic separation (IMS) was used for E. coli recovery following its inoculation at < or =1.6 log10 cfu/g, 5% mustard did not completely eliminate the pathogen from ground beef stored for 6 days. The natural microflora of the ground beef which developed in vacuum packages was unaffected by the addition of 5% mustard flour but some inhibition was found at higher concentrations. Sensory evaluation of the cooked ground beef showed that there were no significant differences in the acceptability of meat treated with 5 or 10% mustard flour. However, panelists could distinguish untreated controls from mustard treatments, but considered the mustard-treated meat to be acceptable. These results showed that it is possible to use mustard flour at levels of >5-10% to eliminate E. coli O157:H7 from fresh ground beef.  相似文献   

14.
A method combining immunomagnetic separation (IMS) and real-time (5'-nuclease) PCR was developed to detect Escherichia coli O157:H7. Monoclonal antibody specific for the E. coli O157 antigen was added to protein A-coated magnetic particles to create antibody-coated beads. The beads specifically captured E. coli O157:H7 from bacterial suspensions. The cells were eluted from the beads and lysed by heating; the eluate was then assayed by real-time PCR, using primers and probe specifically targeting the eaeA gene of E. coli O157:H7. Approximately 50% of the cells in suspension were captured by the beads and detected by real-time PCR. No cross-reactivity was detected when other strains of E. coli were tested. This method was applied to detect E. coli O157:H7 from ground beef. Both cell capture efficiency and real-time PCR efficiency were reduced by meat-associated inhibitors. However, we were still able to detect up to 8% of E. coli O157:H7 from inoculated ground beef samples. The detection sensitivity varied among ground beef samples. The minimum detection limit was <5x10(2) cells ml(-1) for suspensions of E. coli O157:H7 in buffer and 1.3x10(4) cells g(-1) for E. coli O157:H7 in ground beef. The combination of IMS and real-time PCR results in rapid, specific and quantitative detection of E. coli O157:H7 without the need for an enrichment culture step.  相似文献   

15.
Added salt, seasonings, and phosphates, along with slow- and/or low-temperature cooking impart desirable characteristics to whole-muscle beef, but might enhance Escherichia coli O157:H7 survival. We investigated the effects of added salt, seasoning, and phosphates on E. coli O157:H7 thermotolerance in ground beef, compared E. coli O157:H7 thermotolerance in seasoned roasts and ground beef, and evaluated ground beef-derived D- and z-values for predicting destruction of E. coli O157:H7 in whole-muscle beef cooking. Inoculated seasoned and unseasoned ground beef was heated at constant temperatures of 54.4, 60.0, and 65.5°C to determine D- and z-values, and E. coli O157:H7 survival was monitored in seasoned ground beef during simulated slow cooking. Inoculated, seasoned whole-muscle beef roasts were slow cooked in a commercial smokehouse, and experimentally determined lethality was compared with predicted process lethality. Adding 5% seasoning significantly decreased E. coli O157:H7 thermotolerance in ground beef at 54.4°C, but not at 60 or 65.5°C. Under nonisothermal conditions, E. coli O157:H7 thermotolerance was greater in seasoned whole-muscle beef than in seasoned ground beef. Meeting U.S. Government (U.S. Department of Agriculture, Food Safety and Inspection Service, 1999, Appendix A) whole-muscle beef cooking guidance, which targets Salmonella destruction, would not ensure ≥6.5-log CFU/g reduction of E. coli O157:H7 in ground beef systems, but generally ensured $ 6.5-log CFU/g reduction of this pathogen in seasoned whole-muscle beef. Calculations based on D- and z-values obtained from isothermal ground beef studies increasingly overestimated destruction of E. coli O157:H7 in commercially cooked whole-muscle beef as process severity increased, with a regression line equation of observed reduction = 0.299 (predicted reduction) + 1.4373.  相似文献   

16.
A rapid, high-temperature double-sided grilling-broiling (DGB) system was compared to a single-sided broiling (SSB) system for cooking of foodservice ground beef patties to reduce microbial numbers and maintain textural quality. Patties (110 g) containing either Escherichia coli O157:H7 or Listeria monocytogenes (10(6-7) CFU/g) were cooked to target internal temperatures of 60 or 68 degrees C on each cooking system and immediately removed from the grills without the additional holding time at 60 or 68 degrees C that is recommended for foodservice cooking of ground beef patties. Actual final internal temperature attained, position on the grill, degree of doneness, cooking time, after-cook weight, texture characteristics, and bacterial counts of the patties were monitored. The DGB reduced E. coli O157:H7 and L. monocytogenes populations in ground beef patties by 5.7 log10 and 5.4 log10 CFU/g, respectively, when cooked to a target temperature of 60 degrees C (actual final internal temperature of 71.2 degrees C) and by 6.1 log10 and 5.6 log10 CFU/g, respectively, when cooked to a target temperature of 68 degrees C (actual final internal temperature of 75.8 degree C). The SSB reduced E. coli O157:H7 and L. monocytogenes populations by 1.3 log10 and 1.8 log10 CFU/g, respectively, when cooked to a target temperature of 60 degrees C (actual final internal temperature of 62.7 degrees C) and by 2.9 log10 and 3.6 log10 CFU/g, respectively, when cooked to a target temperature of 68 degrees C (actual final internal temperature of 69.3 degrees C). The DGB system effected a higher, more rapid temperature increase in patties cooked to either target temperature compared to the SSB system. This higher temperature was more effective in destroying pathogens in beef patties. Texture analyses determined that patties cooked on the DGB system had significantly higher values for springiness, adhesiveness, and product height as compared to the SSB system, and patties cooked on either system had significantly higher hardness, gumminess, chewiness, and product height values at the target temperature of 68 degrees C as compared to 60 degrees C.  相似文献   

17.
The influence of natural background flora under aerobic and anaerobic incubation on the growth of Escherichia coli O157:H7 in ground beef was investigated. The background flora from eight different commercial ground beef were added to ground beef spiked with E. coli O157:H7 and stored either aerobically or anaerobically at 12 degrees C. The results showed that the presence of a large number of background bacteria in the ground meat inhibited the growth of E. coli O157:H7 both aerobically and anaerobically. Inhibition was more pronounced under anaerobic conditions. The background floras consisted mainly of lactic acid bacteria of which approximately 80% were Lactobacillus sakei. These results show the importance of the natural background flora in meat for inhibition of growth of E. coli O157:H7.  相似文献   

18.
19.
For the evaluation of plating and immunological methods applicable to the detection of Escherichia coli O157:H7 from ground beef and radish sprouts, a collaborative study was conducted. It focused on a comparison of the efficiency of the plating and immunological methods using various plating agars and immuno-kits in combination with enrichment in modified E. coli broth supplemented with novobiocin (mEC + n), and using immunomagnetic separation. The plating media tested were sorbitol MacConkey agar (SMAC), SMAC supplemented with cefixime (0.05 mg/l) and potassium tellurite (2.5 mg/l) (CT-SMAC), and agars containing beta-glucuronidase substrates such as BCM O157 and CHROMagar O157. The immuno-kits used were Now E. coli, Path-Stick O157, VIP, EHEC-Tek ELISA System and Rapiblot E. coli O157. The 20 participating laboratories attempted to detect E. coli O157:H7 in 25 g chilled and frozen samples of ground beef uninoculated and inoculated with E. coli O157:H7 at levels of 138.9 and 23.9 cfu/25 g, and in 25 g chilled and frozen samples of radish sprouts uninoculated and inoculated at levels of 20.4 and 1.7 cfu/25 g. E. coli O157:H7 was recovered well from ground beef by all of the methods except direct plating with SMAC. For radish sprouts, the IMS-plating methods with CT-SMAC, BCM O157 and CHROMagar O157 were most efficient at detecting E. coli O157:H7 in more than 90% of the chilled samples inoculated at the level of 20.4 cfu/25 g. All the methods were less sensitive when applied to similar levels of E. coli O157:H7 in radish sprouts (20.4 cfu/25 g) compared with ground beef (23.9 cfu/25 g) especially if the sprouts were frozen. The sensitivity of the immuno-kits appeared to be similar to the IMS-plating methods, but the specificity was lower. Based on the results, we recommend the IMS-plating method using CT-SMAC and agars containing beta-glucuronidase substrate in combination with static enrichment incubation in mEC + n at 42 degrees C.  相似文献   

20.
In order to provide beef processors with valuable data to validate critical limits set for temperature during grinding, a study was conducted to determine Escherichia coli o157:H7 growth at various temperatures in raw ground beef. Fresh ground beef samples were inoculated with a cocktail mixture of streptomycin-resistant E. coli O157:H7 to facilitate recovery in the presence of background flora. Samples were held at 4.4, 7.2, and 10 degrees C, and at room temperature (22.2 to 23.3 degrees C) to mimic typical processing and holding temperatures observed in meat processing environments. E. coli O157:H7 counts were determined by direct plating onto tryptic soy agar with streptomycin (1,000 microg/ml), at 2-h intervals over 12 h for samples held at room temperature. Samples held under refrigeration temperatures were sampled at 4, 8, 12, 24, 48, and 72 h. Less than one log of E. coli O157:H7 growth was observed at 48 h for samples held at 10 degrees C. Samples held at 4.4 and 7.2 degrees C showed less than one log of E. coli O157:H7 growth at 72 h. Samples held at room temperature showed no significant increase in E. coli O157:H7 counts for the first 6 h, but increased significantly afterwards. These results illustrate that meat processors can utilize a variety of time and temperature combinations as critical limits in their hazard analysis critical control point plans to minimize E. coli O157:H7 growth during the production and storage of ground beef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号