首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immobilized salicylic acid onto XAD-2 (styrene–divinylbenzene cross-linked copolymer) has been attempted in this study as a reagent phase for the development of an optical fibre copper (II) sensor. The measurements were carried out at a given wavelength of 690.27 nm since it yielded the largest divergence different in reflectance spectra before and after reaction with the analyte element. The optimum response was obtained at pH 5.0. The linear dynamic range of Cu(II) was found within the concentration range of 1.0–2.0 mmol L−1 with its LOD of 0.5 mmol L−1. The sensor response from different probes (n = 9) gave an R.S.D. of 8.4% at 0.55 mmol L−1 Cu(II). The effect of interfered ions at 1:1 molar ratio of Cu(II):foreign ion was also studied in this work.  相似文献   

2.

There is a growing demand for the integration of sensor functions on flexible substrates for wearable electronics, robotics or medical monitoring. For this, it is necessary to develop strain gauges both sensitive and integrable at low cost with a low thermal budget. The gauge factor of metal/insulator/metal piezo-tunneling strain sensors is first measured as a function of applied current and polarity, for different electrode materials (Al, Pt or Pd) and insulator (Al2O3) thicknesses. A maximum gauge factor of 90 is obtained with an Al/Al2O3 (10 nm)/Al junction and top electrode injection. Results are discussed based on the Fowler–Nordheim model and it is shown that the electron effective mass in Al2O3 most likely plays a major role in the observed mechano-sensitivity. Next, the feasibility of a low-pressure sensor demonstrator based on a 3D-printing process on a polymer substrate is shown with a sensitivity of 0.19 bar−1 in the 0–450 mbar range.

  相似文献   

3.
A new optical sensor for mercury(II) ions is developed based on immobilization of 4-(2-pyridylazo)-resorcinol (PAR) on a triacetylcellulose membrane. Chemical binding of Hg2+ ions in solution with a PAR immobilized on the triacetylcellulose surface could be monitored spectrophotometrically at 525 nm. The optode shows excellent response over a wide concentration range of 5–3360 μM Hg(II) with a limit of detection of 1.5 μM Hg(II). The influence of factors responsible for the improved sensitivity of the sensor were studied and identified. The response time of the optode was 20 min for a stable solution, and was 15 min for a stirrer solution. The influence of potential interfering ions on the determination of 5 × 10−5 M Hg(II) was studied. The sensor was applied for determination of Hg(II) in water samples.  相似文献   

4.

The paper reports on the fabrication and characterisation of free-standing multimode optical epoxy polymer waveguides consisting of a core made of EpoCore and EpoClad polymer cladding and cover protection layers. The 50 × 50 μm2 rectangular waveguides are intended for short-reach optical interconnection and optimised for an operating wavelength of 850 nm. The waveguides of the proposed shapes were fabricated by a standard photolithography process on a silicon substrate provided with a Poly(vinyl alcohol) thin layer. The free-standing structure was then achieved by peeling the deposited EpoClad/EpoCore/EpoClad structures of that substrate. The optical scattering losses of the created planar waveguides, measured by the fibre probe technique at 632.8 and 964 nm, were 0.30 dB cm−1 at 632.8 nm and 0.17 dB cm−1 at 964 nm. Propagation optical loss measurements for rectangular waveguides were performed by the cut-back method and the best samples had optical losses below 0.55 dB cm−1 at 850 and 1310 nm.

  相似文献   

5.
A highly sensitive hydrazine sensor was developed based on the electrodeposition of gold nanoparticles onto the choline film modified glassy carbon electrode (GNPs/Ch/GCE). The electrochemical experiments showed that the GNPs/Ch film exhibited a distinctly higher activity for the electro-oxidation of hydrazine than GNPs with 3.4-fold enhancement of peak current. The kinetic parameters such as the electron transfer coefficient (α) and the rate of electron exchange (k) for the oxidation of hydrazine were determined. The diffusion coefficient (D) of hydrazine in solution was also calculated by chronoamperometry. The sensor exhibited two wide linear ranges of 5.0 × 10−7-5.0 × 10−4 and 5.0 × 10−4-9.3 × 10−3 M with the detection limit of 1.0 × 10−7 M (s/n = 3). The proposed electrode presented excellent operational and storage stability for the determination of hydrazine. Moreover, the sensor showed outstanding sensitivity, selectivity and reproducibility properties. All the results indicated a good potential application of this sensor in the detection of hydrazine.  相似文献   

6.
Huang  Ying  Yuan  Haitao  Kan  Wenqing  Guo  Xiaohui  Liu  Caixia  Liu  Ping 《Microsystem Technologies》2017,23(6):1847-1852

In this paper, a new flexible three-axial force sensor was designed and investigated, which was composed of four capacitors, and the mechanism was based on the capacitance change induced by an applying three-axial force. For the configuration of the electrodes, four sensing electrodes and a public electrode were in the same plane, which was based on fringe effect theory. Different from the traditional dielectric layer with single material, this multilayered dielectric consisted of both the air gap and polydimethylsiloxane. The structure of the multilayered dielectric changed under the external/applied force, leading to variation of dielectric constant ε, which caused the capacitance change. Measurement results showed that the full-scale range of detectable force was around 0–10 N for all three axes. The average sensitivities of the force sensor units were 0.0095, 0.0053, and 0.0060 N−1 for the normal, X-axis, and Y-axis shear forces, and more test proved its high potential for application in skin-like sensing field.

  相似文献   

7.
Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m−2 yr−1, which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m−2 yr−1 on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m−2 yr−1, respectively, in agreement with observed average GPP (1230 g C m−2 yr−1) and RECO (1046 g C m−2 yr−1). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was ∼5–16 g C week−1 across the study sites, while the goodness of fit (R2) was ∼0.4–0.9. For evapotranspiration (ET), the average value of simulated ET (415 mm yr−1) for all sites and years is close to the average value of the observed ET (451 mm yr−1) by flux towers (on a weekly basis, RMSE∼2–8 mm week−1; R2 = 0.3–0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.  相似文献   

8.

We report the design and simulation of uncooled pyroelectric detectors which utilizes a nanometer sized mesh or truss to support the suspended detector. Pyroelectric detector is a class of thermal detector in which the change in temperature causes the change in the spontaneous polarization in the sensing material. Ca modified lead titanate (PCT) was selected as the thermometer in the detector because of its high pyroelectric figure of merit. The design and simulation of pyroelectric detectors have been conducted by simulating the structure with Intellisuite™. Finite element method (FEM) was used to simulate the structural and thermal properties of the device. The simulated detectors had a spider web-like structure with each of the strut (ring) of spider web had a width of 100 nm. In the design, the pyroelectric detectors utilized Ni0.8Cr0.2 absorber, PCT sensing layer, Ti electrodes, Al2O3 structural layer to obtain low thermal conductance between the detector and Si substrate. Three different types of pyroelectric detectors were designed and analyzed. The first design had linear electrode and simple spider web support. The value of the thermal conductance of this detector was found to be 3.98 × 10−8 W/K. The second design had a longer thermal path than the first one and the thermal conductivity of this device was found to be 2.41 × 10−8 W/K. High detectivity was obtained by reducing the thermal conductance between the sensing layer and the substrate or the heat sink in the third design. The design was optimized for the best result by modifying the shape, dimension and thickness of various layers namely absorber, electrodes, sensing layer, and struts. The thermal conductance between the sensor and the substrate using the third design was found to be as low as 4.57 × 10−9 W/K which is significantly lower than previously reported values. The thicknesses of the web structure, web support, electrodes, sensing layer, and absorber of the final structure were 2, 1, 0.5, 2, and 0.2 µm respectively for this value of thermal conductance. The absorber diameter was 50 µm and the diameter of the spider web was 200 µm. A total of 80 struts with 100 nm width were used in the design.

  相似文献   

9.
A novel vanadium oxide polypropylene carbonate modified glassy carbon electrode was developed and used for the measurement of ascorbic acid (AA). The electrode was prepared by casting a mixture of vanadium tri(isopropoxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the surface of a glassy carbon electrode. The electrochemical behavior of the VO(OC3H7)3–PPC film modified glassy carbon electrode was investigated by cyclic voltammetry and amperometry. This modified electrode exhibited electrocatalytic response to the oxidation of ascorbic acid. Compared with a bare glassy carbon electrode, the modified electrode exhibits a 220 mV shift of the oxidation potential of ascorbic acid in the cathodic direction and a marked enhancement of the current response. The response current revealed a good linear relationship with the concentration of ascorbic acid in the range of 4 × 10−8 and 1 × 10−4 mol L−1 and the detection limit of 1.5 × 10−8 mol L−1 (S/N = 3) in the pH 8.06 Britton–Robinson solution. Quantitative recovery of the ascorbic acid in synthetic samples has been obtained and the interferences from different species have been studied. The method has been successfully applied to the determination of ascorbic acid in fruits. The concentrations of ascorbic acid measured by this method are in good agreement with the literature value. It is much promising for the modified films to be used as an electrochemical sensor for the detection of ascorbic acid.  相似文献   

10.
This paper describes a technique for the measurement of the electrolyte temperature in an operating polymer electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 μm thick parylene film was laminated in the Nafion® electrolyte layer for in situ temperature measurements. Experimental results show that the sensor has a linear response of (3.03 ± 0.09) × 10−3 °C−1 in the 20–100 °C temperature range and is robust enough to withstand the electrolyte expansion forces that occur during water uptake. An electrolyte temperature increase of 1.5 °C was observed in real-time when operating the fuel cell at 0.2 V and a current density of 0.19 A/cm2. The temperature sensitivity of the present sensor is in an order of magnitude better than the conventional micro-thermocouples that have been reported. Additionally, use of micro-fabrication techniques allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show that the sensor has no significant effect on the local temperature distribution.  相似文献   

11.
The electrochemical sensor of triazole (TA) self-assembled monolayer (SAM) modified gold electrode (TA SAM/Au) was fabricated. The electrochemical behaviors of epinephrine (EP) at TA SAM/Au have been studied. The TA SAM/Au shows an excellent electrocatalytic activity for the oxidation of EP and accelerates electron transfer rate. The diffusion coefficient is 1.135 × 10−6 cm2 s−1. Under the optimum experiment conditions (i.e. 0.1 mol L−1, pH 4.4, sodium borate buffer, accumulation time: 180 s, accumulation potential: 0.6 V, scan rate: 0.1 Vs−1), the cathodic peak current of EP versus its concentration has a good linear relation in the ranges of 1.0 × 10−7 to 1.0 × 10−5 mol L−1 and 1.0 × 10−5 to 6.0 × 10−4 mol L−1 by square wave adsorptive stripping voltammetry (SWASV), with the correlation coefficient of 0.9985 and 0.9996, respectively. Detection limit is down to 1.0 × 10−8 mol L−1. The TA SAM/Au can be used for the determination of EP in practical injection. Meantime, the oxidative peak potentials of EP and ascorbic acid (AA) are well separated about 200 ± 10 mV at TA SAM/Au, the oxidation peak current increases approximately linearly with increasing concentration of both EP and AA in the concentration range of 2.0 × 10−5 to 1.6 × 10−4 mol L−1. It can be used for simultaneous determination of EP and AA.  相似文献   

12.
In order to reduce the response time of resistive oxygen sensors using porous cerium oxide thick film, it is important to ascertain the factors controlling response. Pressure modulation method (PMM) was used to find the rate-limiting step of sensor response. This useful method measures the amplitude of sensor output (H(f)) for the sine wave modulation of oxygen partial pressure at constant frequency (f). In PMM, “break” response time, which is minimum period in which the sensor responds precisely, can be measured. Three points were examined: (1) simulated calculations of PMM were carried out using a model of porous thick film in which spherical particles are connected in a three-dimensional network; (2) sensor response speed was experimentally measured using PMM; and (3) the diffusion coefficient and surface reaction coefficient were estimated by comparison between experiment and calculation. The plot of log f versus log H(f) in the high f region was found to have a slope of approximately −0.5 for both porous thick film and non-porous thin film, when the rate-limiting step was diffusion. Calculations showed the response time of porous thick film was 1/20 that of non-porous thin film when the grain diameter of the porous thick film was the same as the thickness of non-porous thin film. At 973 K, “break” response time (tb) of the resistive oxygen sensor was found by experiment to be 109 ms. It was concluded that the response of the resistive oxygen sensor prepared in this study was strongly controlled by diffusion at 923–1023 K, since the experiment revealed that the slope of plot of log f versus log H(f) in the high f region was approximately −0.5. At 923–1023 K, the diffusion coefficient of oxygen vacancy in porous ceria (DV) was expressed as follows: DV (m2s−1) = 5.78 × 10−4 exp(−1.94 eV/kT). At 1023 K, the surface reaction coefficient (K) was found to exceed 10−4 m/s.  相似文献   

13.
In this paper, power ultrasound technology (PUT) is employed to prepare the high-k hafnium-aluminum oxide (HAO) dielectric and thin film transistor (TFT). The continuous propagation of high-intensity ultrasonic waves in the metal oxide precursor solution can improve the dissolution efficiency of the solute and speed up the formation of the HAO precursor solution. The prepared HAO films have a smooth surface roughness of 0.36 nm and high optical transmittance of 85 %. Moreover, HAO films obtain excellent electrical properties with a relative permittivity of 15.9 and a leakage current density of 9.1 × 10−8 A/cm2 at 2 MV/cm as well. Finally, we successfully fabricate TFT with HAO dielectric using PUT, these TFTs exhibit switch characteristics with field effect mobility of 18.7 cm2v−1s−1, threshold voltage (Vth) of −0.47 V, and Vth shift of 0.35 V under positive gate bias stress. The results show that the PUT is a promising method that can remarkably decrease the preparation time of the precursor solution and improve the TFT performance.  相似文献   

14.
Tri-o-thymotide (I) has been used as an electroactive material in PVC (poly(vinyl chloride)) matrix for fabrication of chromium(III)-selective sensor. The membrane containing tri-o-thymotide, sodium tetraphenyl borate (NaTPB), dibutyl phthalate (DBP) and PVC in the optimum ratio 5:1:75:100 (w/w) exhibits a working concentration range of 4.0 × 10−6 to 1.0 × 10−1 M with a Nernstian slope of 20.0 ± 0.1 mV/decade of activity in the pH range of 2.8–5.1. The detection limit of this sensor is 2.0 × 10−7 M. The electrode exhibits a fast response time of 15 s, shows good selectivity towards Cr3+ over a number of mono-, bi- and trivalent cations and can also be used in partially non-aqueous medium (up to 15%, v/v) also. The assembly has been successfully used as an indicator electrode in the potentiometric titration of chromium(III) against EDTA and also to determine Cr(III) quantitatively in electroplating industry waste samples.  相似文献   

15.

In this paper a miniature piezoelectric energy harvester (PEH) with clamped–clamped beam and mass loading at the center is introduced which has more consistency against off-axis accelerations and more efficiency in comparison to other cantilever PEH’s. The beams consist of different layers of Si, piezoelectric, and insulators based on MEMS technology that vibrates by applying an external force to the fixed frame. Due to beam vibration, variable stress is applied to the AlN piezoelectric and a potential difference is created at the output terminals. AlN is deposited on clamped–clamped beams in such a way that produce more stress points which cause more power to be generated in comparison to other cantilever beam PEH’s with about same dimensions. A partial differential equations (PDE) describing the flexural wave propagating in the multi-morph clamped–clamped beam are solved as theoretical calculations for inherent frequency estimation and is confirmed by simulation results. The obtained inherent frequency is 42 Hz which with 1 g (g = 9.81 m/s2) acceleration produces 4 V and 80 µW maximum electrical peak power that can be used in the node of low-power consumption wireless sensor node for wireless sensor network (WSN) applications.

  相似文献   

16.
Thin films of polymethylmethacrylate (PMMA) doped with perylene provide selective, robust and easily prepared optical sensor films for NO2 gas with suitable response times for materials aging applications. The materials are readily formed as 200 nm thin spin cast films on glass from chlorobenzene solution. The fluorescence emission of the films (λmax=442 nm) is quenched upon exposure to NO2 gas through an irreversible reaction forming non-fluorescent nitroperylene. Infrared, UV–VIS and fluorescence spectroscopies confirmed the presence of the nitro adduct in the films. In other atmospheres examined, such as air and 1000 ppm concentrations of SO2, CO, Cl2 and NH3, the films exhibited no loss of fluorescence intensity over a period of days to weeks. Response curves were obtained for 1000, 100 and 10 ppm NO2 at room temperature with equilibration times varying from hours to weeks. The response curves were fit using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem assuming that the situation is reaction limiting. The forward reaction constant fitted to experimental data was kf∼0.06 (ppm min)−1.  相似文献   

17.
Gas sensors based on polyvinylpyrrolidone (PVP)-modified ZnO nanoparticles with different molar ratios of Zn2+: PVP were prepared by a sol–gel method. Morphology of the sensors was characterized by field emission-scanning electron microscopy (FE-SEM), which indicated that the sensor with a molar ratio of Zn2+: PVP = 5:5 showed uniform morphology. Moreover, the sensor exhibited fairly excellent sensitivity and selectivity to trimethylamine (TMA). The response and recovery time of the sensor were 10 and 150 s, respectively. Finally, the mechanism for the improvement in the gas sensing properties was discussed.  相似文献   

18.
This paper describes a novel single-layer bi-material cantilever microstructure without silicon (Si) substrate for focal plane array (FPA) application in uncooled optomechanical infrared imaging system (UOIIS). The UOIIS, responding to the radiate infrared (IR) source with spectral range from 8 to 14 μm, may receive an IR image through visible optical readout method. The temperature distribution of the IR source could be obtained by measuring the thermal–mechanical rotation angle distribution of every pixel in the cantilever array, which is consisted of two materials with mismatching thermal expansion coefficients. In order to obtain a high detection to the IR object, gold (Au) film is coated alternately on silicon nitride (SiNx) film in the flection beams of the cantilevers. And a thermal–mechanical model for such cantilever microstructure is proposed. The thermal and thermal–mechanical coupling field characteristics of the cantilever array structure are optimized through numerical analysis method and simulated by using the finite element simulation method. The thermal–mechanical rotation angle simulated and thermal–mechanical sensitivity tested in the experiment are 2.459 × 10−3 and 3.322 × 10−4 rad/K, respectively, generally in good agreement with what the thermal–mechanical model and numerical analysis forecast, which offers an effective reference for FPA structure parameters design in UOIIS.  相似文献   

19.
An optical waveguide (OWG) pH sensor with two thin guiding layers (composite OWG) was fabricated, and its application to sensing extremely low concentrations of ammonia was demonstrated. The highly sensitive element based on a titanium dioxide (TiO2) film was deposited onto the surface of a potassium ion (K+) exchanged glass OWG by RF sputtering. The surface of the TiO2 film was coated with a thin film of a pH indicator dye (bromothymol blue, BTB) by spin coating. With optimum thickness of BTB film at about 46 nm and of TiO2 films at 18–20 nm, this system proved to be an extremely sensitive ammonia sensor. The experimental results of the optimum conditions on BTB and TiO2 film thicknesses were close to theoretically calculated values. The sensor easily detected 1 parts per trillion (ppt) ammonia reversibly, and had a short response time. The present sensor is also characterized by low cost, simple structure and facile fabrication.  相似文献   

20.

This paper presents the design of a highly sensitive surface acoustic wave (SAW)-based sensor with novel structure for the longitudinal strain measurement. The sensor utilizes thin lithium niobate (LiNbO3) diaphragm as the sensing element rather than the bulk substrate. The application of the diaphragm effectively decreases the cross-sectional area of the strain sensitive element, and meanwhile reduces the resistance between the sensor and the specimen. The newly designed strain sensor is to operate around a frequency of 50 MHz. The insertion loss of − 12 dB and quality factor of 63 are obtained analytically from impulse-response model. The sensor performance with tensile testing of the steel beam is predicted by the finite element method. The prestressed eigenfrequency analysis is conducted with the COMSOL commercial software. The simulation shows the resonance frequency of the sensor shifts linearly with the strain induced in the testing beam. For the SAW sensor with traditional configuration applying 1 mm thick substrate, the strain sensitivity is obtained as 0.41 ppm/με. For the sensor with the novel design employing thin diaphragm with the thickness of 200 μm, the strain sensitivity is increased to 0.83 ppm/με. With the availability of the bulk micromachining of LiNbO3, the application of the piezoelectric diaphragm as sensing element in SAW strain sensor can be an alternative way to enhance the sensor sensitivity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号