首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Numerical simulations have been conducted to clarify the effects of turbulence, in the onset of protrusions on liquid jet surfaces. The turbulences in the liquid jet were simulated by the Rankin vortices. The liquid jet surface was tracked numerically by the VOF method. From numerical simulations, the protrusions on the liquid jet surface are induced by the vortices in the liquid, whose rotational direction decelerates the jet surface. Despite the distance between vortices, the displacement of the liquid jet surface from the initial surface location increases linearly, in time, at almost the same growth rate. In the initial region, the growth rate of the displacement increases as the major semiaxis‐to‐minor semiaxis ratio of the ellipsoidal vortex increases. The initial growth rate of displacement is almost proportional to the vortex intensity. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 141–152, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10078  相似文献   

2.
How control in turbomachinery is very difficult because of the complexity of its fully 3-D flow structure. The authors propose to introduce streamwise vortices into the control of internal flows. A simple configuration of vortices was investigated in order to better understand the flow control methods by means of streamwise vortices. The research presented here concerns streamwise vortex interaction with a horseshoe vortex. The effects of such an interaction are significantly dependent on the relative location of the streamwise vortex in respect to the leading edge of the profile. The streamwise vortex is induced by an air jet. The horseshoe vortex is generated by the leading edge of a symmetric profile. Such a configuration gives possibility to investigate the interaction of these two vortices alone. The presented analysis is based on numerical simulations by means of N-S compressible solver with a two-equation turbulence model.  相似文献   

3.
针对当前广泛应用于低排放燃气轮机燃烧室中的空气雾化喷嘴,采用大涡模拟(Large Eddy Simulation,LES)和流体体积法(Volume of Fluid,VOF)研究了其在流动模糊(Flow Blurring,FB)和流动聚焦(Flow Focusing,FF)模式下射流一次破碎过程的差异。结果表明:两种模式的射流一次破碎过程均可分为3个阶段,气液交界面波动阶段、射流发展阶段和射流破碎阶段;喷嘴内部回流区的演变决定了气液交界面的波动程度,流动模糊模式下射流在后两个阶段的径向速度和形态变化程度均远高于流动聚焦模式,气泡回流过程在其射流破碎阶段占据主导地位,液体管道内气泡分布位置与涡的强度呈正相关。  相似文献   

4.
The flow field of a rectangular exit, semi-confined and submerged turbulent jet impinging orthogonally on a flat plate with Reynolds number 8500 was studied by large eddy simulation (LES). A dynamic sub-grid stress model has been used for the small scales of turbulence. The evolvements such as the forming, developing, moving, pairing and merging of the coherent structures of vortex in the whole regions were obtained. The results revealed that the primary vortex structures were generated periodically, which was the key factor to make the secondary vortices generate in the wall jet region. In addition, the eddy intensity of the primary vortices and the secondary vortices induced by the primary vortices along with the time were also analyzed.  相似文献   

5.
Ultralightweight lattice-frame materials (LFMs) with open, periodic microstructures are attractive multifunctional systems that can perform structural, thermal, actuation, power storage and other functions [A.G. Evans, J.W. Hutchinson, M.F. Ashby, Multifunctionality of cellular metal systems, Prog. Mater. Sci. 43 (1999) 171–221]. This paper presents experimental and numerical studies of local fluid flow behaviour and its contribution to local and overall pressure and heat transfer characteristics of such a lattice material with tetrahedral unit cells. A single layer of the LFM with porosity of 0.938 is sandwiched between impermeable endwalls that receive uniform heat flux and the heat transfer is subjected to forced air convection.Experimental measurements with particle image velocity (PIV) and thermochromic liquid crystal (TLC), backed by computational fluid mechanics (CFD) simulations, revealed two dominant local flow features in the LFM. Distinctive vortex structures near the vertices where the LFM meets the endwalls and flow separation on the surface of LFM struts were observed. The vortex structures formed around the vertices include horseshoe vortices and arch-shaped vortices. The horseshoe vortex increases local heat transfer on the endwall region up to 180% more than that in regions where the least influence of the horseshoe vortex is present. The arch-shaped vortex behind the vertices creates regions of flow recirculation and reattachment, leading to relatively high heat transfer.The location of flow separation along the struts varies with the spanwise position due to the presence of vertices (or endwalls). The regions on the strut surface before flow separation contribute approximately 40% of the total heat transfer in the LFM. The delay of the flow separation leads to an increase in the overall heat transfer.Comparisons with foams and other heat dissipation media such as packed beds, louvered fins and microtruss materials suggest that the LFMs compete favourably with the best available heat dissipation media.  相似文献   

6.
The present study numerically investigates two-dimensional fluid flow and heat transfer in the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of 0 N 0.05, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the pressure coefficients and Nusselt number at the stagnation point representing the fluid flow and heat transfer characteristics also vary as a function of Stuart number.  相似文献   

7.
Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induces noise,vibration,and cavitation corrosion on the pumping system.In this study,the change of free surface vortex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly.The homogeneous free surface model is used to apply interactions of air and water.The results show that air intake by the free surface vortex motion can be visualized using the iso-sufface of air volume fraction.The vortices make an air column from the free surface to the pump intake.Also,it was found that the free surface vortex can be controlled by installing curtain walls.  相似文献   

8.
Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades or endwalls to build up a film shielding the material. The holes often are inclined in the downstream direction and give rise to a kidney vortex. This is a counter-rotating vortex pair, with an upward flow direction between the two vortices, which tends to lift off the surface and to locally feed hot air towards the blade outside the pair. Reversing the rotational sense of the vortices reverses these two drawbacks into advantages. In the considered case, an anti-kidney vortex is generated using two subsequent rows of holes both inclined downstream and yawed spanwise with alternating angles. In a previous study, we performed large-eddy simulations (which focused on the fully turbulent boundary layer) of this anti-kidney vortex film-cooling and compared them to a corresponding physical experiment. The present work analyzes the simulated flow field in detail, beginning in the plenum (inside the blade or endwall) through the holes up to the mixture with the hot boundary layer. To identify the vortical structures found in the mean flow and in the instantaneous flow, we mostly use the λ 2 criterion and the line integral convolution (LIC) technique indicating sectional streamlines. The flow regions (coolant plenum, holes, and boundary layer) are studied subsequently and linked to each other. To track the anti-kidney vortex throughout the boundary layer, we propose two criteria which are based on vorticity and on LIC results. This enables us to associate the jet vortices with the cooling effectiveness at the wall, which is the key feature of film cooling.  相似文献   

9.
10.
In this study a combined buoyancy and inertia driven vortex flow in an air jet impinging onto a heated circular plate confined in a cylindrical chamber simulating that in a vertical single-wafer rapid thermal processor for semiconductor manufacturing is investigated experimentally by flow visualization. A copper plate is used here to simulate the wafer for its better uniformity of the surface temperature and air is used to replace the inert gases. We concentrate on how the inlet gas flow rate, temperature difference between the wafer and air jet, and chamber pressure affect the vortex flow. The results show that typically the flow in the chamber is in the form of two-roll structure characterized by a circular vortex roll around the air jet along with another circular roll near the side wall of the chamber. Both rolls are somewhat deformed. The rolls are generated by the reflection of the jet from the wafer and by the deflection of the wall boundary layer flow along the wafer surface by the upward buoyancy due to the heated wafer. At low buoyancy and inertia the vortex rolls are steady and axisymmetric. At increasing buoyancy associated with the higher temperature difference and chamber pressure, the inner roll becomes slightly smaller and the outer roll becomes correspondingly bigger. Moreover, at a higher gas flow rate the inner roll is substantially bigger. Based on the present data, a correlation equation is provided to predict the location where the two rolls contact each other, providing the approximate size of the rolls. Moreover, at high buoyancy and inertia the flow becomes time dependent and does not evolve to a steady state.  相似文献   

11.
This study aims to investigate the unsteady cavitation shedding dynamics flow around a NACA 0015 hydrofoil in thermo-sensitive fluid with thermal effect. The thermal effects are captured by a coupled solution of the continuity, momentum and energy equations, and the numerical results show a reasonable agreement with the available experiments. Time evolution process of the vortex structure is investigated. The ability and limitation of B-factor is analysed to evaluate the thermal effect, which can provide guidance for the further improvement of B-factor. The re-entrant jet and vortex structure show strong coherent relationship with the flow separation. The re-entrant jet promotes the formation of vortex structure, which in turn affects the separation flow of the flow field. Skin friction coefficient and boundary vorticity flux are applied to displace the flow separation on the hydrofoil surface. The results showed that the streamwise velocity decreases sharply in the vicinity of the collision between the re-entrant jet and the main stream, the skin friction streamline suddenly breaks off and separation or re-attachment line occurs. The intensity of the re-entrant jet inside the cavity becomes gradually weaker, the strength of the vortex is also weakened, which causes the skin friction coefficient in this region to be almost zero, and the phenomenon of flow separation and re-attachment is indistinct.  相似文献   

12.
针对锯齿前缘结构调控叶片近壁面流场特性,以NACA0018叶片为对象,采用大涡模拟方法研究不同锯齿前缘结构对叶片近壁面流场的影响机制。获得了来流速度为30 m·s-1、雷诺数为513 440、0°攻角下叶片近壁面流场分布特性。分析了锯齿前缘和叶片前缘和尾缘处压力脉动及分离涡的影响。数值结果表明:对正弦波齿而言,随着振幅的增大,在波谷处的小涡开始向前缘移动,整体上小尺度涡增多,前缘近壁面压力脉动增大,尾缘近壁面压力脉动减小;对叠加波形齿而言,尾迹涡进一步破碎,厚度变薄,叶片表面出现破碎的小尺度涡,在尾缘处叶片压力脉动幅值下降最为明显,且未出现明显的窄带尖峰。  相似文献   

13.
This paper presents a numerical investigation of an active tip-clearance control method based on cooling injection from the blade tip surface. It aims to study the influences of air injection on controlling tip clearance flow, with emphasis on the effects of the injection location on secondary flow and the potential thermal benefits from the cooling jet. The results show that injection location plays an important role in the redistribution of secondary flow within the cascade passage. Injection located much closer to the pressure-side corner performs better in reducing tip clearance massflow and its associated losses. However, it also intensifies tip passage vortex, due to less restraint deriving from the reduced tip clearance vortex. Lower plenum total pressure is required to inject equivalent amount of cooling air, but the heat transfer condition on the blade tip surface is a bit worse than that with injection from the reattachment region. Thus the optimum location of air injection should be at the tip separation vortex region.  相似文献   

14.
The detailed numerical simulation has been carried out to investigate the effect of synthetic jet excitation on the secondary flow at 5° incidence in a compressor cascade, in which the synthetic jet actuation is equipped on the suction surface. The influence of excitation position, one fixed near the trailing edge and the other fixed a little far from the trailing edge, has also been studied. The results show that unsteady disturbance of desirable synthetic jet effectively enhances the mixing of the fluid inside the separation region, which reduces the vortex intensity and the energy loss, improves the flow status in the cascade, and also suppresses velocity fluctuation near the trailing edge. Additionally, the actuation fixed near the separation region proves to be more effective and exit load distribution is more uniform due to the employment of the synthetic jet.  相似文献   

15.
In this paper, the spatially evolving of the higher Reynolds numbers gas-solid mixing layer under compressible conditions was investigated by a new direct numerical simulation technology. A high-resolution solver was performed for the gas-phase flow-field, particles with different Stokes numbers were traced by the Lagrangian approach based on one-way coupling. The processes of the vortex rolling up and pairing in the two-dimensional mixing layer were captured precisely. The large-scale structures developed from the initial inflow are characterized by the counter-rotating vortices. The mean velocity and the fluctuation intensities profiles agree well with the experimental data. Particles with smaller Stokes numbers accumulate at the vortex centers due to the smaller aerodynamic response time; particles with moderate Stokes numbers tend to orbit around individual streamwise vortices and in the periphery of paring vortices; particles with larger Stokes numbers disperse less evenly, showing a concentration distribution in the flow field.  相似文献   

16.
S. Schreck  M. Robinson  M. Hand  D. Simms 《风能》2000,3(4):215-232
Horizontal axis wind turbines can experience significant time‐varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modelling advances, in turn, will rely on more thorough comprehension of the three‐dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high‐load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle‐of‐attack excursions above the static stall threshold. Stall vortices occupied approximately one‐half of the blade span and persisted for nearly one‐fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

17.
The aim of the present paper is to obtain a better understanding of the stability properties of wakes generated by wind turbine rotors. To accomplish this, a numerical study on the stability of the tip vortices of the Tjaereborg wind turbine has been carried out. The numerical model is based on large eddy simulations of the Navier–Stokes equations using the actuator line method to generate the wake and the tip vortices. To determine critical frequencies, the flow is disturbed by inserting harmonic perturbations, giving rise to spatially developing instabilities. The results show that the instability is dispersive and that growth arises only for some specific frequencies and type of modes, in agreement with previous instability studies. The result indicates two types of modes; one where oscillations of neighboring vortex spirals are out of phase and one where oscillations in every vortex spiral in phase. The mode with spirals out of phase results in the largest growth with the main extension of the disturbance waves in radial and downstream directions. The out‐of‐phase disturbance leads to vortex pairing once the development leaves the linear stage. The study also provides evidence of a relationship between the turbulence intensity and the length of the near wake. The relationship, however, needs to be calibrated against measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The present study examines a three‐dimensional numerical simulation of vortex structures and heat transfer behind a hill mounted in a laminar boundary layer. A vortex pair is formed symmetrically in the separation bubble behind the hill, and a hairpin vortex is periodically shed in the wake. The hairpin vortex moves downstream with time, and the gradient of the head of the hairpin vortex increases. Further downstream, the hairpin vortex is deformed to an Ω‐shaped structure. In the growth process of the hairpin vortex, horn‐shaped secondary vortices grow near the wall. The dissipation rate of the temperature fluctuation around the hairpin vortex increases because the heated fluid near the wall is removed to the free stream by Q2 ejection. Heat transfer increases due to the legs of the hairpin vortex and secondary vortices. These vortices generate high turbulence in the flow field and also contribute to an increase in Reynolds shear stress and turbulent heat flux. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(7): 398–411, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20217  相似文献   

19.
Annular cavities are found inside rotor shafts of turbomachines with an axial or radial throughflow of cooling air, which influences the thermal efficiency and system reliability of the gas turbines. The flow and heat transfer phenomena in those cavities should be investigated in order to minimize the thermal load and guarantee the system reliability. An experimental rig is set up in the Institute of Steam and Gas Turbines, RWTH Aachen University, to analyze the flow structure inside the rotating cavity with an axial throughflow of cooling air. The corresponding 3D numerical investigation is conducted with the in-house flow solver CHTflow, in which the Coriolis force and the buoyancy force are implemented in the time-dependent Navier-Stokes equations. Both the experimental and numerical results show that the whole flow structure rotating slower than the cavity rotating speed. The flow passing the observation windows in the experimental and numerical results indicates the quite similar trajectories. The computed sequences and periods of the vortex flow structure correspond closely with those observed in the experiment. Furthermore, the numerical analysis reveals a flow pattern changing between single pair, double pair, and triple pair vortices. It is suggested that the vortices inside the cavity are created by the gravitational buoyancy force in the investigated case, while the number and strength of the vortices are controlled mainly by the Coriolis force.  相似文献   

20.
Annular cavities are found inside rotor shafts of turbomachines with an axial or radial throughflow of cooling air, which influences the thermal efficiency and system reliability of the gas turbines. The flow and heat transfer phenomena in those cavities should be investigated in order to minimize the thermal load and guarantee the system reliability. An experimental rig is set up in the Institute of Steam and Gas Turbines, RWTH Aachen University, to analyze the flow structure inside the rotating cavity with an axial throughflow of cooling air. The corresponding 3D numerical investigation is conducted with the in-house flow solver CHTflow, in which the Coriolis force and the buoyancy force are implemented in the time-dependent Navier-Stokes equations. Both the experimental and numerical results show that the whole flow structure rotating slower than the cavity rotating speed. The flow passing the observation windows in the experimental and numerical results indicates the quite similar trajectories. The computed sequences and periods of the vortex flow structure correspond closely with those observed in the experiment. Furthermore, the numerical analysis reveals a flow pattern changing between single pair, double pair, and triple pair vortices. It is suggested that the vortices inside the cavity are created by the gravitational buoyancy force in the investigated case, while the number and strength of the vortices are controlled mainly by the Coriolis force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号