首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To enhance actuation performance without prestrain, an elastomeric acrylic triblock copolymer, poly(methyl methacrylate)‐block‐poly(n‐butyl acrylate)‐block‐poly(methyl methacrylate), was modified with two kinds of additives, oligomeric poly(n‐butyl acrylate) and the plasticizer dibutyl sebacate. An actuator modified with those additives showed about 6% strain, whereas the unmodified actuator showed only 1% strain for the same applied electric field without prestrain. In addition, actuation was attained at lower critical electric field strength (625 and 1000 V mm?1 for modified and unmodified actuators, respectively). Upon increasing the amounts of the additives, the electrically induced actuation velocity and degree of deformation increased. These results are explained by the dielectric and mechanical properties of the elastomers. The dielectric constants for elastomers modified with dibutyl sebacate were larger than those for elastomers modified with oligomeric poly(n‐butyl acrylate). The initial tensile stresses of both of the modified elastomers were much smaller than that of unmodified elastomer. The results provide a route to enhancing actuation performance of dielectric elastomers without prestrain. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
Biorenewable polyisoprene latex obtained from natural rubber, Hevea brasiliensis, was used to prepare the reusable polyisoprene–poly(alkyl acrylate) foam for petroleum‐based liquid absorption. The foam was produced via latex vulcanization and cured by steaming. The effect of various types of poly(alkyl acrylate) such as poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), and poly(butyl acrylate) (PBA) on oil sorption capacity of the foam were studied. Scanning electron microscope (SEM) images showed interconnected open‐cell macrostructure with the foam porosity greater than 75% and good compression set. The oil sorption capacity of the foam was in the range of 2.0–16.6 g g?1. The addition of poly(alkyl acrylate) enhanced hydrophobicity and oil sorption capacity of the foam. The absorbed oil was easily recovered by squeezing and the foam can be reused up to 30 sorption–desorption cycles and still preserve high quality sorption. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42688.  相似文献   

3.
Maleic anhydride, styrene, and butyl acrylate were grafted onto polypropylene (PP) via free‐radical polymerization. The grafted product, polypropylene‐g‐(maleic anhydride–styrene–butyl acrylate) (PP‐g‐PMSB), was prepared in a water suspension system, and a nongrafted polymer, poly(maleic anhydride–styrene–butyl acrylate) (PMSB′), was produced at the same time. The optimal synthesis conditions were determined by orthogonal experiments. The crystallinity, thermal stability, melt flow rate, and hydrophilicity of the grafting samples were investigated in the presence or absence of PMSB′. The results indicate that the grafting percentage (Gp) of PP‐g‐PMSB and the content of PMSB′ (Cm) increased as the monomer content increased under the optimum reaction conditions. All of these ternary monomers were grafted onto the PP backbone as long‐chain branches. With increasing Gp, PP‐g‐PMSB's polarity and thermal stability increased, the crystallinity decreased, and the molecular distribution became narrower. The contact angle decreased to 72.12° when Gp was 6.87%. With increasing Cm, the crystallinity and thermal stability of the grafting products decreased compared to PP‐g‐PMSB and the molecular distribution grew wider. The contact angle decreased to 63.51° when Cm was 3.64%; this indicated that the presence of PMSB′ further improved the hydrophilicity of the grafted products. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Ultrasonically initiated emulsion polymerization of n‐butyl acrylate (BA) without added initiator has been studied. The experimental results show that high conversion of BA can be reached in a short time by employing an ultrasonic irradiation technique with a high purge rate of N2. The viscosity average molecular weight of poly(n‐butyl acrylate) (PBA) obtained reaches 5.24 × 106 g mol?1. The ultrasonically initiated emulsion polymerization is dynamic and complicated, with polymerization of monomer and degradation of polymer occurring simultaneously. An increase in ultrasound intensity leads to an increase in polymerization rate in the range of cavitation threshold and cavitation peak values. Lower monomer concentration favours enhancement of the polymerization rate. 1H NMR, 13C NMR and FTIR spectroscopies reveal that there are some branches and slight crosslinking, and also carboxyl groups in PBA. Ultrasonically initiated emulsion polymerization offers a new route for the preparation of nanosized latex particles; the particle size of PBA prepared is around 50–200 nm as measured by transmission electron microscopy. © 2001 Society of Chemical Industry  相似文献   

5.
Commercially available chlorinated polypropylene has been used as a macroinitiator for the Cu(0)‐mediated atom transfer radical polymerization of methyl methacrylate and tert‐butyl acrylate to obtain well‐defined graft copolymers. The relatively narrow molecular weight distribution in the graft copolymers and linear kinetic plots indicated the controlled nature of the copolymerization reactions. Both Fourier transform infrared and 1H NMR studies confirmed that the graft reactions had taken place successfully. After graft copolymer formation, tert‐butyl groups of poly(tert‐butyl acrylate) side chains were completely converted into poly(acrylic acid) chains to afford corresponding amphiphilic graft copolymers. © 2016 Society of Chemical Industry  相似文献   

6.
The butyl acrylate synthesis from the esterification reaction of acrylic acid with 1‐butanol in a fixed‐bed adsorptive reactor packed with Amberlyst 15 ion exchange resin was evaluated. Adsorption experiments were carried out with nonreactive pairs at two temperatures (323 and 363 K). The experimental results were used to obtain multicomponent adsorption equilibrium isotherms of Langmuir type. Reactive adsorption experiments using different feed molar ratios and flow rates were performed, at 363 K, and used to validate a mathematical model developed to describe the dynamic behavior of the fixed‐bed adsorptive reactor for the butyl acrylate synthesis. Due to the simultaneous reaction and separation steps, it was possible to obtain a butyl acrylate maximum concentration 38% higher than the equilibrium concentration (for an equimolar reactants ratio solution as feed at a flow rate of 0.9 mL min?1 and 363 K) showing that sorption‐enhanced reaction technologies are very promising for butyl acrylate synthesis. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1263–1274, 2015  相似文献   

7.
Two new kinds of amphiphilic copolymers were synthesized in this work. Poly(1‐octene‐co‐acrylic acid) copolymers were prepared through the copolymerization of 1‐octene and tert‐butyl acrylate, and the hydrolysis of tert‐butyl acrylate units. Poly(1‐octene‐co‐acrylic acid)‐g‐poly (ethylene glycol) copolymers were obtained from the esterification reaction between poly(1‐octene‐co‐acrylic acid) and poly(ethylene glycol) monomethyl ether. They were characterized by means of 1H‐NMR, 13C‐NMR, GPC, and FTIR. These amphiphilic copolymers can form stable micelles in aqueous solutions. The critical micelle concentration was determined by fluorescence spectroscopy. The micellar morphology and size distribution were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
A latex interpenetrating polymer network (LIPN), consisting of poly(n‐butyl acrylate), poly(n‐butyl acrylate‐co‐ethylhexyl acrylate), and poly(methyl methacrylate‐co‐ethyl acrylate) and labeled PBEM, with 1,4‐butanediol diacrylate as a crosslinking agent was synthesized by three‐stage emulsion polymerization. The initial poly(n‐butyl acrylate) latex was agglomerated by a polymer latex containing an acrylic acid residue and then was encapsulated by poly(n‐butyl acrylate‐co‐ethylhexyl acrylate) and poly(methyl methacrylate‐co‐ethyl acrylate). A polyblend of poly(vinyl chloride) (PVC) and PBEM was prepared through the blending of PVC and PBEM. The morphology and properties of the polyblend were studied. The experimental results showed that the processability and impact resistance of PVC could be enhanced considerably by the blending of 6–10 phr PBEM. This three‐stage LIPN PBEM is a promising modifier for manufacturing rigid PVC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1168–1173, 2004  相似文献   

9.
Randomized carboxyl poly(2‐ethylhexyl acrylate) (A‐1) and randomized epoxy poly(2‐ethylhexyl acrylate) (B‐1) rubbers were synthesized in the form of liquid rubber by a solution polymerization technique. The liquid rubbers A‐1 and B‐1 were characterized by 1H NMR and IR spectroscopic analysis, non‐aqueous titration, viscosity measurements and gel permeation chromatography. The liquid rubbers A‐1 (M?n = 3900 g mol?1), B‐1 (M?n = 4100 g mol?1) and a (1:1) mixture of A‐1 and B‐1 were pre‐reacted with epoxy resin separately and the modified epoxy networks were made by curing with high temperature curing agent. The modified epoxy networks were evaluated by unnotched Izod impact testing. The morphology and toughening behaviour were analysed by scanning electron microscopy. Optimum properties were obtained with the mixture of A‐1 and B‐1. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
A poly(linolenic acid)‐g‐poly(tert‐butyl acrylate) graft copolymer was synthesized from polymeric linolenic acid peroxide possessing peroxide groups in the main chain by free radical polymerization of tert‐butyl acrylate. Graft copolymers having structures of poly(linolenic acid)‐g‐poly(caprolactone)‐g‐poly(tert‐butyl acrylate) were synthesized from polymeric linolenic acid, possessing peroxide groups on the main chain by the combination of free radical polymerization of tert‐butyl acrylate and ring‐opening polymerization of ε‐caprolactone in one‐pot. The obtained graft copolymers were characterized by proton nuclear magnetic resonance, gel permeation chromatography, thermal gravimetric analysis, differential scanning calorimetry, and scanning electron microscopy techniques. Furthermore, Au/n‐Si diodes were fabricated with and without poly(linolenic acid)‐g‐poly(caprolactone)‐g‐poly(tert‐butyl acrylate)‐4 to form a new interfacial polymeric layer for the purpose of investigating this polymer's conformity in electronic applications. Some main electrical characteristics of these diodes were investigated using experimental current–voltage measurements in the dark and at room temperature.  相似文献   

11.
Alkaline anion exchange membrane with semi‐interpenetrating polymer network (s‐IPN) was constituted based upon quaternized poly(butyl acrylate‐co‐vinylbenzyl chloride) (QPBV) and poly(vinylidene fluoride‐co‐hexafluoropropylene) [P(VDF‐HFP)]. The QPBV was synthesized via the free radical copolymerization, followed by quaternization with N‐methylimidazole. The s‐IPN system was constituted by melting blend of QPBV and P(VDF‐HFP), and then crosslinking of P(VDF‐HFP). Ion exchange capacity, water uptake, mechanical performance, and thermal stability of these membranes were characterized. TEM showed that alkaline anion exchange membrane exhibited s‐IPN morphology with microphase separation. The fabricated s‐IPN membrane exhibited hydroxide ion conductivity up to 15 mS cm?1 at 25 °C and a maximum DMFC power density of 46.55 mW cm?2 at a load current density of 98 mA cm?2 at 30 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45775.  相似文献   

12.
Two monodisperse graft copolymers, poly(4‐methylstyrene)‐graft‐poly(tert‐butyl acrylate) [number‐average molecular weight (Mn) = 37,500, weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.12] and polystyrene‐graft‐poly(tert‐butyl acrylate) (Mn = 72,800, Mw/Mn = 1.12), were prepared by the atom transfer radical polymerization of tert‐butyl acrylate catalyzed with Cu(I) halides. As macroinitiators, poly{(4‐methylstyrene)‐co‐[(4‐bromomethyl)styrene]} and poly{styrene‐co‐[4‐(1‐(2‐bromopropionyloxy)ethyl)styrene]}, carrying 40% of the bromoalkyl functionalities along the chain, were used. The dependencies of molecular parameters on monomer conversion fulfilled the criteria for controlled polymerizations. In contrast, the dependencies of monomer conversion versus time were nonideal; possible causes were examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2930–2936, 2002  相似文献   

13.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) using potassium diperiodatoargentate(III) [Ag(III)]–PVA redox system as initiator was studied in an alkaline medium. Some structural features and properties of the graft copolymer were confirmed by Fourier‐transfer infrared spectroscopy, scanning electron microscope, X‐ray diffraction and thermogravimetric analysis. The grafting parameters were determined as a function of concentrations of monomer, initiator, macromolecular backbone (X?n = 1750, M? = 80 000 g mol?1), reaction temperature and reaction time. A mechanism based on two single‐electron transfer steps is proposed to explain the formation of radicals and the initiation profile. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate and n‐butyl acrylate, were also used to produce graft copolymerizations. It has been confirmed that grafting occurred to some degree. Thermogravimetric analysis was performed in a study of the moisture resistance of the graft copolymer. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The thermal degradation of poly(n‐butyl methacrylate‐co‐alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n‐butyl methacrylate‐co‐methyl acrylate) (PBMAMA) and a particular composition of poly(n‐butyl methacrylate‐co‐ethyl acrylate) (PBMAEA) and poly(n‐butyl methacrylate‐co‐butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n‐butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n‐butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n‐butyl methacrylate content. The degradation of poly (n‐butyl methacrylate‐co‐alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

15.
A novel redox system, tert‐butyl hydroperoxide (TBHP)–silk sericin (SS), was used to initiate the graft copolymerization of methyl acrylate (MA) onto silk sericin in an aqueous medium. The graft copolymer, consisting of nanoparticles with a fine core–shell structure, was characterized using Fourier transfer infrared spectroscopy. The effects of the concentrations of MA and TBHP, reaction temperature and time on the grafting parameters of the copolymerization were studied in detail. In terms of grafting percentage and grafting efficiency, the optimum reaction conditions were obtained as follows: [MA] = 0.465 mol L?1, [TBHP] = 3.884 × 10?4 mol L?1, T = 80 °C, t = 150 min. Transmission electron microscopy images of the particles showed a core–shell morphology, where poly(methyl acrylate) cores were covered with SS shells. A possible initiation mechanism is proposed. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
Polystyrene‐block‐poly(n‐butyl acrylate) block copolymers were prepared from 4‐oxo‐2,2,6,6‐tetramethylpiperidinooxy (4‐oxo‐TEMPO) capped polystyrene macroinitiators at a high temperature, 165°C. It was found that the number‐average molecular weight of PBA chains in block copolymers could reach above 10,000 rapidly at early stage of polymerization with a narrow polydispersity index of 1.2–1.4, but after that, the polymerization seemed to be retarded. Furthermore, according to the kinetic analysis, the concentration of 4‐oxo‐TEMPO was increased mainly by the hydrogen transfer reaction of hydroxylamine (4‐oxo‐TEMPOH) to growing radicals during polymerization. This increase in 4‐oxo‐TEMPO concentration could retard the growth of polymer chains. The rate constant of the hydrogen transfer reaction of 4‐oxo‐TEMPOH to growing radicals, kH, estimated by the kinetic model is about 9.33 × 104M‐1s?1 at 165°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
BACKGROUND: In a number of studies it has been shown that 2,2,6,6‐tetramethylpiperidinooxy (TEMPO)‐mediated polymerization of acrylates is not facile. Therefore, the object of the study reported here was to prepare poly[styrene‐block‐(tert‐butyl acrylate)] (PS‐b‐PtBA) block copolymers using 4‐oxo‐TEMPO‐capped polystyrene macroinitiator as an initiator, in the presence of small amounts of N,N‐dimethylformamide (DMF). The kinetic analysis and the effect of DMF on the reaction mechanism are also discussed. RESULTS: PS‐b‐PtBA block copolymer was prepared through polymerization of tert‐butyl acrylate (tBA) initiated by 4‐oxo‐TEMPO‐capped polystyrene macroinitiator at 135 °C. The polymerization rate of tBA could be increased by adding a small amount of DMF, and the number average molecular weight of the PtBA block in PS‐b‐PtBA reached 10 000 g mol?1 with narrow polydispersity. The activation rate constant kact?tBA of alkoxyamine increased and the recombination rate constant krec?tBA decreased with increasing DMF concentration. CONCLUSION: DMF was shown to be a rate‐enhancing additive for the polymerization of tBA using a 4‐oxo‐TEMPO‐capped polystyrene macroinitiator. From the kinetic analysis, it was concluded that the improvement of polymerization with the addition of DMF was due to an increase in kact?tBA and a decrease in krec?tBA. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
The free‐radical polymerization of alkenyl‐terminated polyurethane dispersions with styrene and n‐butyl acrylate was performed to obtain a series of stable polyurethane–poly(n‐butyl acrylate‐co‐styrene) (PUA) hybrid emulsions. The core–shell structure of the emulsions was observed by transmission electron microscopy, and the microstructure was studied by 1H‐NMR and Fourier transform infrared spectroscopy. The effects of the poly(propylene glycol)s (number‐average molecular weights = 1000, 1500, and 2000 Da) and the mass ratios of polyurethane to poly(n‐butyl acrylate‐co‐styrene) (PBS; 50/50, 40/60, 30/70, 20/80, and 10/90) on the structure, morphology, and properties of the PUAs were investigated. The average particle size and water absorption values of the PUAs increased with increasing of PBS content. However, the surface tension decreased from 34.61 to 30.29 mN/m. PUA‐2, with a bimodal distribution, showed Newtonian liquid behaviors, and PUA‐3 showed a great thermal stability, fast drying characteristics, and excellent adhesion to packaging films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43763.  相似文献   

19.
Syntheses of monodisperse poly[(styrene)‐co‐(n‐butyl acrylate)] and poly[(styrene)‐co‐(2‐ethylhexyl acrylate)] were carried out by dispersion polymerization. The reactions were performed in the mixed solvent of ethanol–water in the presence of azo‐bisisobutyronitrile and poly(N‐vinylpyrrolidone) as the initiator and dispersant, respectively. The effects of reaction parameters, that is the type and concentration of dispersant, ratio of the mixed solvent, reaction temperature, agitation rate, monomer composition between styrene and n‐butyl acrylate or 2‐ethylhexyl acrylate, crosslinking agent and reaction time on the particle size, size distribution and average molecular weights of the resulting copolymer were thoroughly investigated. The resulting copolymer particles were smooth on their spherical surface and the sizes were in the range 0.6–1.8 µm with a narrow size distribution. In most cases, a correlation between small particle sizes with high average molecular weights was observed. The average particle size generally increased with increasing reaction temperature, time and acrylate monomer content. In contrast, the particle size decreased as the molecular weight, concentration of dispersant, polarity of the medium or agitation rate was increased. The glass transition temperature (Tg) of the copolymers can be controlled by the mole ratio of the comonomer. The Tg values decreased when the content of acrylate monomers in the copolymer increased, and Tg values of the synthesized copolymer were in the range 66–102 °C. Instead of using n‐butyl acrylate monomer in the copolymerization, 2‐ethylhexyl acrylate copolymerization with styrene resulted in insignificant changes in the particle sizes but there were significant decreases in Tg values. In this study, the monodisperse particles can be obtained by monitoring the appropriate conditions regarding PVP K‐30 (2–8 wt%), ethanol/water (90/10 wt%), the reaction temperature (70 °C) and the agitation rate (100 rpm). © 2000 Society of Chemical Industry  相似文献   

20.
Ultrafast preparation of branched poly(methyl acrylate) (BPMA) with high‐molecular weight through single electron transfer living radical polymerization (SET‐LRP) of inimer at 25°C has been attempted, atom transfer radical polymerization (ATRP) at 60°C was also carried out for comparison. Gas chromatography, proton nuclear magnetic resonance, and triple detection size exclusion chromatography were used to analyze these polymerizations. As expected, SET‐LRP system showed much faster polymerization rate than ATRP system, the calculated apparent propagation rate constants (kpapp) are 3.69 × 10?2 min?1 and 6.23 × 10?3 min?1 for SET‐LRP and ATRP system, respectively. BPMA with high‐molecular weight (Mw.MALLS = 86,400 g mol?1) compared with that in ATRP (Mw.MALLS = 61,400 g mol?1) has been prepared. POLYM. ENG. SCI., 54:1579–1584, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号