首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of glasses with formula (SiO2)0.7 ? x (Na2O)0.3(CuO) x with (0.0 ≤ x ≤ 0.20) were prepared and studied by means of ac measurements in the frequency range 20 kHz-10 MHz at room temperature. The study of frequency dependence of both dielectric constant ?′ and dielectric loss ?″ showed a decrease of both quantities with increasing frequency indicating a normal behavior of dielectrics. Cole-Cole plots are drawn with ?′ and ?″. From the Cole-Cole plot parameters like optical dielectric constant, static dielectric constant, average relaxation time, molecular relaxation time are evaluated. Besides, the ac conductivity were analyzed by considering a power relation σ(ω) = A ω s (s ≤ 1). The observed behavior of the ac conduction is treated in terms of the quantum-mechanical tunneling (QMT) model.  相似文献   

2.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

3.
N‐vinylcarbazole (NVC) was polymerized by 13X zeolite alone in melt (65°C) or in toluene (110°C) and a poly(N‐vinylcarbazole) (PNVC)‐13X composite was isolated. Composites of polypyrrole (PPY) and polyaniline(PANI) with 13X zeolite were prepared via polymerization of the respective monomers in the presence of dispersion of 13X zeolite in water (CuCl2 oxidant) and in CHCl3 (FeCl3 oxidant) at an ambient temperature. The composites were characterized by Fourier transform infrared analyses. Scanning electron microscopic analyses of various composites indicated the formation of lumpy aggregates of irregular sizes distinct from the morphology of unmodified 13X zeolite. X‐ray diffraction analysis revealed some typical differences between the various composites, depending upon the nature of the polymer incorporated. Thermogravimetric analyses revealed the stability order as: 13X‐zeolite > polymer‐13X‐zeolite > polymer. PNVC‐13X composite was essentially a nonconductor, while PPY‐13X and PANI‐13X composites showed direct current conductivity in the order of 10?4 S/cm in either system. However, the conductivity of PNVC‐ 13X composite could be improved to 10?5 and 10?6 S/cm by loading PPY and PANI, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 913–921, 2006  相似文献   

4.
The dielectric relaxation characteristics of conductive carbon black (CCB) reinforced ethylene acrylic elastomer (AEM) vulcanizates have been studied as a function of frequency (101–106 Hz) at different filler loading over a wide range of temperatures (30–120°C). The effect of filler loadings on the dielectric permittivity (ε′), loss tangent (tan δ), complex impedance (Z*), and electrical conductivity (σac) were studied. The variation of ε′ with filler loading has been explained based on the interfacial polarization of the fillers within a heterogeneous system. The effect of filler loading on the imaginary (Z″) and real (Z′) part of Z* were distinctly visible, which may be due to the relaxation dynamics of polymer chains at the polymer–filler interface. The frequency dependency of σac has been investigated using percolation theory. The phenomenon of percolation in the composites has been discussed in terms of σac. The percolation threshold (?crit) occurred in the range of 20–30 phr (parts per hundred) of filler loading. The effect of temperature on tan δ, ε′, σac, and Nyquist plots of CCB‐based AEM vulcanizates has been investigated. The CCB was uniformly dispersed within the AEM matrix as studied from the transmission electron microscope (TEM) photomicrographs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Temperature‐stable relaxor dielectrics have been developed in the solid solution system: 0.45Ba0.8Ca0.2TiO3–(0.55 ? x)Bi(Mg0.5Ti0.5)O3xNaNbO3. Ceramics of composition x = 0 have a relative permittivity ?r = 950 ± 15% over a wide temperature range from +70°C to 600°C. Modification with NaNbO3 at x = 0.2 decreases the lower limiting temperature to ?70°C, but also decreases relative permittivity such that ?r ~ 600 ± 15% over the temperature range ?70°C to 500°C. For composition x = 0.3, the low‐temperature dispersion in loss tangent, tan δ, (at 1 kHz) shifts to lower temperature, giving tan δ values ≤0.02 across the temperature range ?60°C to 300°C in combination with ?r ~ 550 ± 15%. Values of dc resistivity for all samples are of the order of 1010 Ω m at 250°C and 107 Ω m at 400°C.  相似文献   

6.
The electrochemical preparation of polypyrrole (PPY)–poly(vinyl alcohol) (PVA) conducting polymer composite films on an indium–tin oxide glass electrode from an aqueous solution containing a pyrrole monomer, a p‐toluene sulfonate electrolyte, and a PVA insulating polymer is reported. The prepared PPY–PVA composite films were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and conductivity measurements. The FTIR study showed that the composite of PPY and PVA formed through bond formation between PVA and the p‐toluene sulfonate dopant anion. The conductivity data of PPY–PVA showed that with increasing PVA concentration in the pyrrole solution, the conductivity of the prepared PPY–PVA film increased up to a certain level due to an increase in conjugation length, and later, it decreased with further increases in the PVA concentration in the solution due to a decrease in conjugation length. This was supported by the FTIR band intensity I1560/I1480. The TGA results show that the PPY–PVA polymer composite film was thermally more stable than the PPY film. A shielding effectiveness of 45.6 dB was exhibited by the PPY–PVA composite film in the microwave frequency range. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4107–4113, 2006  相似文献   

7.
A series of temperature‐stable microwave dielectric ceramics, (1?x)(Na0.5La0.5)MoO4x(Na0.5Bi0.5)MoO4 (0.0 ≤ x ≤ 1.0) were prepared by using solid‐state reaction. All specimens can be well sintered at temperature of 580°C–680°C. Sintering behavior, phase composition, microstructures, and microwave dielectric properties of the ceramics were investigated. X‐ray diffraction results indicated that tetragonal scheelite solid solution was formed. Microwave dielectric properties showed that permittivity (εr) and temperature coefficient of resonant frequency (τf) were increased gradually, while quality factor (Q × f) values were decreased, at the x value was increased. The 0.45(Na0.5La0.5)MoO4–0.55(Na0.5Bi0.5)MoO4 ceramic sintered at 640°C with a relative permittivity of 23.1, a Q × f values of 17 500 GHz (at 9 GHz) and a near zero τf value of 0.28 ppm/°C. Far‐infrared spectra (50–1000 cm?1) study showed that complex dielectric spectra were in good agreement with the measured microwave permittivity and dielectric losses.  相似文献   

8.
The mechanical and electrical properties of the natural rubber vulcanizates loaded with lignocellulosic materials were studied. It was found that the stress of vulcanizates decreased with initial fiber loading. Also, it was shown that the presence of fibers and an adhesion system greatly improves the aging resistance of the rubber composites.

The resistivity ρ, dielectric permittivity ?′, and dielectric loss ?″ of the investigated samples were determined in the frequency range 102–105 Hz at room temperature. It was noticed that ?′ for bagasse pulp (Bp) is higher than that for cotton stalks pulp (Csp), which is attributed to the higher hemilignin content in Bp which is characterized with a low degree of polarization. An abrupt increase of ?″ at a higher content of Bp was noticed.  相似文献   

9.
In this study, (1.1111 ? x)(0.9CS–0.1NaTf)? xAl2O3(0.02 ≤ x ≤ 0.1) [where CS is chitosan, NaTf is sodium triflate (NaCF3SO3), and Al2O3 is aluminum oxide] nanocomposite solid polymer electrolyte (SPE) films based on CS were prepared by a solution casting technique. X‐ray diffraction and scanning electron microscopy analysis revealed that the alumina nanoparticles had a great effect on the structural and morphological behavior of the CS–NaTf (90:10) polymer electrolyte. An investigation of the electrical and dielectric parameters of the nanocomposite SPE films was conducted. Electrical impedance spectroscopy was carried out for this purpose. The relationships between the electrical and dielectric parameters were used to interpret and understand the ion‐conduction mechanism. We observed that the direct‐current conductivity (σdc) and dielectric constant followed the same trend with salt concentration. σdc versus temperature showed the Arrhenius and Vogel‐Fulcher‐Tammann (VTF) regions. The drops of σdc at high temperatures were observed for all of the samples. The ion relaxation dynamics were studied from Argand plots. For the first time, we confirmed the existence of a strong experimental relationship between the high‐frequency semicircle of the impedance plots and the high‐frequency dispersion regions of the alternating‐current conductivity (σac). The dispersion regions of σac were used to study the ion‐conduction mechanism. The behavior of the frequency exponent as a function of the temperature was used to interpret σdc versus the temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41774.  相似文献   

10.
T. Liu 《Fuel Cells》2013,13(6):1056-1059
The cobaltate perovskites Sr1–xDyxCoO3–δ (SDCO, x = 0.1, 0.2, 0.3) materials were synthesized and evaluated as cathode for La0.8Sr0.2Ga0.8Mg0.2O3–δ solid electrolyte supported intermediate‐temperature‐solid oxide fuel cells (IT‐SOFCs). The crystal structure of Sr0.9Dy0.1CoO3–δ was defined in the cubic Pm–3m space group (No. 221), Sr0.8Dy0.2CoO3–δ and Sr0.7Dy0.3CoO3–δ had a tetragonal I4/mmm structure. The electrical conductivities were all higher than 100 S cm–1 in the temperature of 170–800 °C. The polarization resistance (Rp) and its activation energy (Ea) increased with increasing x. SEM analysis confirmed the porous microstructure of the SDCO cathodes and good LSGM|LDC|SDCO adherence. Sr0.9Dy0.1CoO3–δ exhibited the best cathode characteristics with a maximum test‐cell power density of 841 mW cm–2, being a high potential candidate of cathode material for IT‐SOFCs.  相似文献   

11.
Structural and dielectric properties of (1?x)BaTiO3xBi(Mg1/2Ti1/2)O3 (x = 0.1–0.5) were investigated to understand the binary system and utilize it for high‐voltage, high energy density capacitors. The solubility limit for Bi(Mg1/2Ti1/2)O3 in a BaTiO3 perovskite was between x = 0.4 and x = 0.5. A phase with pseudocubic symmetry was formed for x = 0.1–0.4; a secondary phase developed at x = 0.5. Dielectric measurements showed highly diffusive and dispersive relaxor‐like characteristics from 10 to 40 mol% of Bi(Mg1/2Ti1/2)O3. These compositions also showed high relative permittivity with low‐temperature coefficients of permittivity over a wide range of temperatures ?100°C–600°C. Relaxation behavior was quantitatively investigated using the Vogel–Fulcher model, which revealed the activation energy of 0.17–0.22 eV. Prototyped multilayer capacitors of 18 mm × 17 mm × 4 mm dimensions with a capacitance of 12.5 nF at 1 kHz were successfully constructed and demonstrated multiple charge–discharge characteristics up to 10 kV.  相似文献   

12.
Synthesis of a new magnetoelectric [(1?x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3xCoFe2O4] (weight fraction x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) ceramic particulate composites with its structural characterization and magneto‐electric properties have been reported here in this study. Lead free piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) and ferrimagnetic CoFe2O4 (CFO) were synthesized using sol‐gel and combustion methods respectively. (1?x)BCZT‐xCFO magnetoelectric composites were then synthesized by mixing of the calcined individual ferroic phases with required weight fractions. Powder X‐ray diffraction studies indicate the coexistence of BCZT and CFO phases in the composites sintered at 1300°C. 0.5BCZT‐0.5CFO composite showed high strain sensitivity (dλ/dH) of 52×10?9 Oe?1, which is comparable to that of pure CFO (50×10?9 Oe?1). A high piezoelectric voltage constant (g33) of 8×10?3 V m/N was measured for 0.8BCZT‐0.2CFO sample. All the composites showed magnetoelectric effect and a high magnetoelectric coupling coefficient (αME) of 6.85 mV/cm Oe was measured for 0.5BCZT‐0.5CFO composite at 1 kHz and a large ME coefficient of 115 mV/cm Oe at its resonance frequency. The effect of microstructure on the magnetoelectric properties of [(1?x)BCZT‐(x)CFO] composites has been studied and reported here as a function of its piezoelectric (BCZT)/ferrite (CoFe2O4) content.  相似文献   

13.
Electrically conductive nanocomposites based on ethylene acrylic elastomer (AEM) and multiwalled carbon nanotube (MWNT) have been successfully prepared. Before mixing the MWNT is dispersed in ethanol in presence of ionic liquids such as 1‐methyl‐3‐octylimidazolium chloride (MOIC) and 1‐allyl‐3‐methyl imidazolium chloride (AMIC). Uniform dispersion of MWNT in the nanocomposites is achieved in presence of ionic liquid, which is confirmed by the high‐resolution transmission electron microscopic (HRTEM) microphotographs. The tensile strength increases up to 6 phr of MWNT loading and above that it decreases. However, the tensile strength increases due to the incorporation of ionic liquid assisted dispersed MWNT. It is observed from the dynamic mechanical analysis (DMA) that the storage modulus (E′) and glass transition temperature (Tg) of AEM matrix increase by incorporation of MWNT. The E′ also increases and the tan δmax marginally decreases due to the incorporation of dispersed MWNT in presence of ionic liquids. The dielectric relaxation characteristic properties of AEM/MWNT nanocomposites such as dielectric permittivity (ε′), AC conductivity (σac), impedance (Z*) have been studied as a function of frequency (101−106 Hz) in presence of ionic liquids. The ε′ and σac increase with increasing the MWNT loading due to the easy orientation of dipoles and formation of interconnected conductive networks in the nanocomposites. The electromagnetic interference shielding effectiveness (EMISE) is studied in the X‐band frequency range of 8 to 12 GHz, which significantly improved with increase in MWNT loading. POLYM. COMPOS., 37:2568–2580, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
A novel lead‐free relaxor ferroelectric ceramic of (0.67?x)BiFeO3–0.33BaTiO3xBa(Mg1/3Nb2/3)O3 [(0.67?x)BF–0.33BT–xBMN,= 0–0.1] was prepared by a solid‐state reaction method. A relatively high maximum polarization Pmax of 38 μC/cm2 and a low remanent polarization Pr of 5.7 μC/cm2 were attained under 12.5 kV/mm in the = 0.06 sample, leading to an excellent energy‐storage density of W ~1.56 J/cm3 and a moderate energy‐storage efficiency of η ~75%. Moreover, a good temperature stability of the energy storage was obtained in the = 0.06 sample from 25°C to 190°C. The achievement of these characteristics was basically attributed to an electric field induced reversible ergodic to ferroelectric phase transition owing to similar free energies near a critical freezing temperature. The results indicate that the (0.67?x)BF–0.33BT–xBMN lead‐free realxor ferroelectric ceramic could be a promising dielectric material for energy‐storage capacitors.  相似文献   

15.
The variation in dielectric characteristics of an epoxy-novolac molding compound during dynamic cure was studied by means of dielectrometry (DE). Dielectric parameters such as permittivity (?′), loss factor (?″), and dissipation (tan δ) were observed to depend on various factors including temperature, frequency, the extent of cure (α, measured previously by using differential scanning calorimetry, DSC), as well as contributions from ionic conductivity (σ) and electrode polarization. The characteristic relaxation time (τ) and the relaxed permittivity (?r), suggested in the literature as possible parameters for cure monitoring purposes, was found difficult to determine because of interfernce from ionic conduction and electrode polarization. In comparison, σ could be measured throughout the entire cure process and was observed to depend only on temperature and α. In combination with our previous DSC results, an empirical function relating α to temperature and α was constructed. Our analysis also indicated that the strong maximum in the ?′ and the ?″ curves during the course of dynamic cure was a direct result of the α-and the temperature-dependence of σ; the strong maximum of ?″ is directly related neither to gelation nor to vitrification.  相似文献   

16.
Ceramics in the system 0.45Ba0.8Ca0.2TiO3–(0.55?x)Bi(Mg0.5Ti0.5)O3xNaNbO3, x = 0–0.02 were fabricated by a conventional solid‐state reaction route. X‐ray powder diffraction indicated cubic or pseudocubic symmetry for all samples. The parent 0.45Ba0.8Ca0.2TiO3–0.55Bi(Mg0.5Ti0.5)O3 composition is a relaxor dielectric with a near‐stable temperature coefficient of relative permittivity, εr = 950 ± 10% across the temperature range 80°C–600°C. Incorporation of NaNbO3 at x = 0.2 extends the lower working temperature to ≤25°C, with εr = 575% ± 15% from temperatures ≤25°C to >400°C, and tan δ < 0.025 from 25°C to 400°C. Values of dc resistivity ranged from ~109 Ω·m at 250°C to ~106 Ω·m at 500°C. The properties suggest that this material may be of interest for high‐temperature capacitor applications.  相似文献   

17.
Solid solution formation in the lead‐free binary system (1?x)K0.5Bi0.5TiO3?xBi(Mg0.5Ti0.5)O3 has been studied for compositions x ≤ 0.12. X‐ray powder diffraction shows single‐phase perovskite for x < 0.1, and a mixed phase region between tetragonal and pseudocubic phases for compositions 0.04 ≤ x ≤ 0.06. Large electromechanical strains of ~0.3% at fields of 50 kV/cm are recorded in the mixed phase region, with d33* (Smax/Emax) values of ~600 pm/V. The materials sustain polarization at low electric fields with remnant polarization ~18 μC/cm2 and coercive field ~20 kV/cm for x = 0.06. Relative permittivity‐temperature plots display relaxor characteristics, with peak temperature ~340°C.  相似文献   

18.
A ternary solid solution (1 ? x)(0.88Bi0.5Na0.5TiO3–0.12BaTiO3)‐xBi(Zn0.5Ti0.5)O3 (BNBZT, BNBZTx) was designed and fabricated using the traditional solid‐state reaction method. The temperature and composition dependence of dielectric, ferroelectric, piezoelectric, and fatigue properties were systematically investigated and a schematic phase diagram was proposed. The substitution with Bi(Zn0.5Ti0.5)O3 was found to shift the phase transition (ferroelectric tetragonal to relaxor pseudocubic phase) to lower temperatures. At a critical composition x of 0.05, large electric‐field‐induced strain response with normalized strain Smax/Emax as high as 526 pm/V was obtained under a moderate field of 4 kV/mm around room temperature. The strain exhibited good temperature stability within the temperature range of 25°C–120°C. In addition, excellent fatigue‐resistant behavior was observed in the proposed BNBZT solid solution after 106 bipolar cycles. These give the BNBZT system great potential as environmental friendly solid‐state actuator.  相似文献   

19.
Nanostructured lithium‐manganese‐rich nickel‐manganese‐oxide xLi2MnO3·(1‐x)LiNi0.5Mn0.5O2 (0.3 ≤ x ≤ 0.6) composite materials were synthesized via spray pyrolysis using mixed nitrate precursors. All the materials showed a composite structure consisting of Li2MnO3 (C2/m) and LiNi0.5Mn0.5O2 components, and the amount of Li2MnO3‐phase appeared to increase with x, as observed from XRD analysis. These composite materials showed a high‐discharge capacity of about 250 mAhg?1. In the range of x considered, the layered 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 materials displayed the highest capacity and superior cycle stability. Nonetheless, voltage suppression from a layered‐spinel phase transition was observed for all the composites produced. This voltage suppression was dependent of the amount of Li2MnO3 phase present in the composite structure. © 2013 American Institute of Chemical Engineers AIChE J 60: 443–450, 2014  相似文献   

20.
New lead‐free (100?x)Li0.12Na0.88NbO3xBaTiO3 (0 ≤ x ≤ 40) piezoelectric ceramics have been synthesized using conventional ceramics processing route. Structural analysis revealed an existence of morphotropic phase boundary (MPB), separating orthorhombic and tetragonal phases, between the BaTiO3 content, x = 10–12.5. A partial phase diagram has been established based on temperature‐dependent permittivity data for this new system and a almost vertical temperature‐independent MPB is observed. Improvement in electrical properties near MPB (e.g., for x = 12.5; εr = 8842 at Tm and 795 at room temperature, d33 = 30 pC/N, kp = 12.0%, Qm = 162, Pr = 11.2 μC/cm2, Ec = 19.2 kV/cm, = 174 pm/V) is observed, and is attributed to the ease of polarization rotation due to coexistence of orthorhombic and tetragonal phases. The results show that these materials could be suitable for piezoelectric vibrators and ultrasonic transducer applications. The sample with x = 25, also exhibited high dielectric permittivity, εr = 2400, and low dielectric loss, tanδ = 0.033 at room temperature which could be suitable for capacitor (X7R/Z5U) applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号