首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New ion‐exchange acid/base‐blend (SPPO/PBI) membranes were prepared by mixing N,N‐dimethylacetamide (DMA) solutions of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in the ammonium form and of polybenzimidazole (PBI), casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were found insoluble in DMA. The preliminary tests of the membranes were carried out in an H2/O2 fuel cell at room temperature. Their performance in the fuel cell increased with the increase in the concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominanting, which swelled excessively in water, did not give reproducible results, and their performance was usually inferior to that of the membranes having an optimum ratio of both components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1118–1127, 2002  相似文献   

2.
The phase‐inversion process was used to prepare integrally skinned asymmetric polysulfone (PSf) membranes with different pore sizes. Membranes were prepared from a casting solution of PSf; N‐methyl‐2‐pyrrolidone (NMP) as solvent; and 1,4‐dioxane, diethylene glycol dimethyl ether (DGDE), acetone, and γ‐butyrolactone (GBL) as additives by immersing them in water as a coagulant. The effect of the additives on membrane performance and structure was investigated. The low miscibility of 1,4‐dioxane, DGDE, and acetone with the coagulant resulted in reduced membrane pore size. However, by using GBL as additive pore size of the membrane was slightly increased because of its higher miscibility with the coagulant than NMP. Changing the amount of additives in the casting solution could control the molecular‐weight cutoff values of asymmetric membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2562–2566, 2003  相似文献   

3.
Two kinds of regenerated cellulose membranes for hemodialysis were prepared from casting solutions of N‐methylmorpholine‐N‐oxide (NMMO) and cuprammonium (denoted NMMO membranes and cuprammonium membranes, respectively). The concentration of cellulose in the casting solution investigated was 6–8 wt %. The permeation characteristics of both membrane series were compared in terms of the ultrafiltration rate (UFR) of pure water, the sieving coefficient (SC) of dextran, and the solute permeabilities of urea, creatinine, and vitamin B12. The UFR and SC of the NMMO membranes were strongly affected by the cellulose concentration of the casting solution, and NMMO was a preferable solvent for the production of cellulose membranes with high performance; the cuprammonium solution gave low‐performance membranes. The pore structures of both types of membranes were estimated with the Hagen–Poiseuille law. The results showed that the NMMO membranes had larger pore radius and smaller pore numbers than the cuprammonium membranes. The differences in the membrane pore structures led to the differences in the performance between the two membrane series. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 333–339, 2003  相似文献   

4.
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The copolymer poly(vinylidene fluoride)‐graft‐poly(4‐vinylpyridine) (PVDF‐g‐P4VP) was prepared through the graft copolymerization of poly(vinylidene fluoride) with 4‐vinylpyridine. Through the blending of the PVDF‐g‐P4VP copolymer with poly(N‐isopropylacrylamide) (PNIPAm) in an N‐methyl‐2‐pyrrolidone solution, PVDF‐g‐P4VP/PNIPAm membranes were fabricated by phase inversion in aqueous media. Elemental analyses indicated that the blend concentration of PNIPAm in the blend membranes increased with an increase in the blend ratio used in the casting solution. Scanning electron microscopy revealed that the membrane surface tended to corrugate at a low PNIPAm concentration and transformed into a smooth morphology at a high PNIPAm concentration. The surface morphology and pore size distribution of the microfiltration membranes could be regulated by the blend concentration of the casting solution, temperature, pH, and ionic strength of the coagulation bath. X‐ray photoelectron spectroscopy revealed a significant enrichment of PNIPAm on the membrane surface. The flux of aqueous solutions through the blend membranes exhibited a pH‐ and temperature‐dependent behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4089–4097, 2006  相似文献   

6.
The effect of solvent on properties of solution‐cast dense films was investigated using high molecular weight sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) and five different solvents having relatively similar molar volumes. The study revealed that polymer–solvent interactions existing in casting solution primarily determine the concentration of residual solvent and surface morphology of the films. On the other hand, the O2 and CO2 permeabilities, which for most permeable films were more than three times greater than for the least permeable ones, appear to be governed by the volatility of solvent in casting solution. At the same time, the more permeable films showed lower O2/N2 and CO2/CH4 permeability ratios than the less permeable ones. In addition to physical factors such as polymer–solvent interactions and volatility of solvent in casting solution, the differences in gas transport properties of SPPO films could arise from the formation of quaternary salts—in particular, in the case of films prepared from the pyridine solution. The analysis of casting solution properties, surface images by atomic force microscopy, and gas transport properties allowed us to associate defective structures of some SPPO films with a specific surface morphology and a particular combination of solvent properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1100–1110, 2003  相似文献   

7.
朱姝  赵颂  王志  田欣霞  时孟琪  王纪孝 《化工学报》2015,66(10):3991-3999
通过调节铸膜液中聚砜浓度和非溶剂含量,浸没沉淀法制备海绵状结构的支撑膜,并在支撑膜上界面聚合制备聚酰胺反渗透复合膜。分别对支撑膜及反渗透复合膜的结构和性能进行表征,考察聚砜浓度对支撑膜结构和性能的影响,以及不同结构支撑膜对反渗透复合膜结构和性能的影响。结果显示,随着聚砜浓度的增加,支撑膜表面孔径和孔隙率下降,断面结构变致密,耐压性增强。在不同支撑膜上制备的反渗透复合膜具有不同的通量和脱盐率。综合考虑支撑膜及反渗透复合膜的性能,以聚砜浓度为15%制备的海绵状结构支撑膜更适于作为制备反渗透复合膜的支撑层。  相似文献   

8.
Three kinds of high‐flux ultrafiltration membranes were fabricated by blending strongly charged polymer [sulfonated poly(phenylene oxide) (SPPO)] with neutral polymer [cellulose acetate (CA), polyethersulfone (PES), or polyvinylidene fluoride (PVDF)]. After blending with SPPO, the pure water flux of CA‐SPPO, PES‐SPPO, and PVDF‐SPPO membrane increase by 3, 76, and 30 times at a transmembrane pressure of 100 kPa. Compared with the unblended membranes, the pore radius of CA‐SPPO, PES‐SPPO, and PVDF‐SPPO membrane increased from 31.9 to 33.2 nm, 26.1 to 28.6 nm, and 19.8 to 25.7 nm, respectively. The addition of strongly charged polymer decreased the thermodynamic stability of casting solutions, promoting the phase inversion process and resulting in highly porous structure. The charged groups and hydrophilicity of the polymer facilitate the formation of an additive concentration gradient (more additive in the active layer), endowing the blend membrane with better hydrophilicity and greater wettability gradient. The high porosity, good hydrophilicity, and larger wettability gradient enable the high permeation of blend membranes. This work shows how the strongly charged polymer affects the formation and performance of blend membrane, which will be useful for designing high‐performance membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44570.  相似文献   

9.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
The miscibility and crystallization behavior of the solution‐blended lightly sulfonated poly(phenylene oxide) (SPPO)/poly(styrene‐co‐4‐vinylpyridine) (PSVP) blend were investigated by conventional and modulated differential scanning calorimetry (MDSC). It was found that the original blend film is actually composed of a crystalline SPPO phase and a noncrystalline compatible SPPO–PSVP phase. The original phase‐segregated structure will evolve to a noncrystalline homogenous structure by subsequent high temperature annealing. The resulting good miscibility was attributed to two aspects: one is that the SPPO crystalline structure could be destroyed as annealing temperature is high enough; the other is that the acid–base interaction between the sulfonic group of SPPO and the pyridine ring of PSVP could promote mixing of different components effectively. And such acid–base interaction was demonstrated by 1C NMR spectra. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2843–2848, 2001  相似文献   

11.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
Asymmetric and porous polysulfone (PSf) membranes were prepared by wet phase separation. Binary (PSf)/N,N‐dimethylacetamide (DMA) solutions with polymer concentrations of 12.5–30 wt % were cast in thicknesses of 80–700 μm and immersed in a coagulation bath of pure water. The morphology of the formed membranes' cross sections consisted of a cellular structure and macrovoids; the cellular structure density was highest when the cast solution contained about 21 wt % PSf, regardless of the cast thickness. The membranes' pure water permeability decreased as the cast thickness increased. The instantaneous onset of the turbidity, regardless of the PSf content and cast thickness, its steep growth, and relatively high end value were the main characteristics of the turbidity phenomena taking place during the formation of the protomembranes. Again, the membrane‐forming system with a PSf/DMA solution with about 21 wt % polymer, regardless of the cast thickness, had the highest turbidity end value. The shrinkage of the cast solutions into the corresponding protomembrane was also examined quantitatively. Inverse experiments showed that the direction of the gravitation field had no influence on the shrinkage of the membrane‐forming ternary system or the membranes' morphology and its water permeability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1667–1674, 2005  相似文献   

13.
Poly(vinyl chloride) (PVC) is one of the most common polymers used in the water treatment industry due to outstanding hydrophobicity and mechanical strength. Generating eco‐friendly membranes derived from natural polymers has gained attention, particularly for water purification and producing potable water. In this study, nonwoven mats were prepared by electrospinning polymer solutions. Mats with a tailorable hydrophilicity were prepared by electrospinning solution mixtures containing PVC and an eco‐friendly, hydrophilic natural polymer: soy protein. As the viscosity of the solution decreased, the average fiber diameter, and average pore surface area reduced. However, when the PVC concentration remained constant and the soy protein concentration increased, the viscosity decreased and average fiber diameter became reduced, while the average pore diameter remained relatively constant. The mats with volumetric ratios of PVC:soy protein of 85:15 and 80:20 displayed optimal characteristics suitable for mat fabrication based on the fiber diameter and average pore surface area. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2737–2744, 2018  相似文献   

14.
The ionic conductivity of Nafion® 1100 extruded membranes re‐cast from solutions of butan‐1‐ol and propan‐2‐ol is measured in 0.5 mol dm–3 H2SO4 at 295 K, using an immersed, four‐electrode d.c. technique. The general trend is an increasing conductivity for the thicker membranes. Materials which were solution‐cast from butan‐1‐ol yielded the highest conductivity while a series of membranes with lower conductivities (similar to those of an extruded Nafion® 1100 series of membranes) was found using propan‐2‐ol. The conductivity results indicate that membranes manufactured by extrusion and casting from various solvents might have different structures. Differences in the water content and conductivity of the membranes are considered to arise from the impact of processing conditions on the surface and bulk structure of the membranes.  相似文献   

15.
Cellulose membranes were obtained by solutions of cellulose being cast into a mixture of N‐methylmorpholine‐N‐oxide (NMMO) and water under different processing conditions. Atomic force microscopy (AFM) was used to investigate the surface structures of the membranes. The AFM method provided information on both the size and shape of the pores on the surface, as well as the roughness of the skin, through a computerized analysis of AFM micrographs. The results obtained showed that the surface morphologies were intrinsically associated with the permeation properties. For the cellulose membranes, increasing the NMMO concentration and the temperature of the coagulation bath led to higher fluxes and lower bovine serum albumin rejection. These were always correlated with higher values of the roughness parameters and larger pore sizes of the membrane surfaces. When the cellulose concentration of the casting solution was 11 wt %, the membrane showed a nodular structure with interconnected cavity channels between the agglomerated nodules. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3389–3395, 2002  相似文献   

16.
Interfacial polymerization is one of the main techniques for producing composite nanofiltration (NF) membranes. In this study, five NF membranes were produced through interfacial polymerization under different conditions of reactions, namely varying reaction time, as well as monomer concentrations. The membranes were then imaged using atomic force microscope (AFM). AFM images provided information of the average pore size, pore size distribution, and surface roughness. For some of the membranes, discrete pore sizes were visible. Increasing the reaction time resulted in decreasing water permeabilities but based on AFM imaging the pore size was of similar value. Increasing the monomer concentration also resulted in decreasing water permeabilities. However, based on AFM imaging the pore size differs considerably. Additional permeation experiments were also carried out using NaCl and Na2SO4 solutions with membranes identified as NF. By fitting the rejection data using a model such as the Donnan‐steric‐pore model, the variation in effective charge density of the membranes was also determined. The ability to tailor composite NF membranes with the right properties will significantly improve membrane performance. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 605–612, 2005  相似文献   

17.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

18.
This study investigates the effect of solvent properties on the structural morphology and permeation properties of polysulfone/β‐cyclodextrin polyurethane (PSf/β‐CDPU) mixed‐matrix membranes (MMMs). The membranes were prepared by a modified phase‐inversion route using four different casting solvents [dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), dimethyl acetamide (DMA), and N‐methyl‐2‐pyrrolidone (NMP)]. While DMSO‐based membranes demonstrated particularly high permeability (ca 147 L/m2h.bar), their crystallinity was low compared to MMMs prepared using DMA, DMF and NMP due to the formation of thin active layers on their surfaces. Cross‐sectional morphology revealed that the MMMs have a dense top skin with finger‐like inner pore structures. Membranes prepared using NMP displayed the highest hydrophilicity, porosity, and crystallinity due to the low volatility of NMP; DMF membranes exhibited superior mechanical and thermal stability due to its (DMF) high hydrogen bonding (δH) values. Thus, the morphological parameters, bulk porosity, and flux performance of MMMs have a significant inter‐relationship with the solubility properties of each solvent (i.e., δH, density, volatility, solubility parameter). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2005–2014, 2013  相似文献   

19.
Integrally skinned asymmetric polyetherimide (PEI) membranes were prepared by the phase inversion process from casting solution containing dimethylformamide (DMF) as a solvent and 1,4‐dioxane as a cosolvent. Deionized water was used as a coagulation medium in preparing asymmetric membranes. The effect of 1,4‐dioxane was investigated by measuring casting solution properties, permeation properties, and membrane structures. Various effects of polymer concentration, evaporation time, and coagulation bath temperature were also studied. Low miscibility of 1,4‐dioxane with coagulant (water) resulted in reducing membrane pore size. The molecular weight cutoff values of asymmetric membranes could be controlled by changing the amount of 1,4‐dioxane in the casting solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1300–1307, 2002; DOI 10.1002/app.10452  相似文献   

20.
In our recent study, pH‐sensitive polyethersulfone (PES) hollow fiber membranes were prepared by blending poly (acrylonitrile‐co‐acrylic acid) (PANAA), and the electroviscous effect had great effect on the water flux change. While the question remains: is the water flux change caused by the electroviscous effect for all the membranes with different pore sizes? Herein, pH‐sensitive hollow fiber membranes with different pore sizes were prepared. The pore size and the theoretic water flux were calculated through the ultrafiltration of polyethylene glycol (PEG) solution. Comparing the calculated fluxes and the experimental ones, we found that the water flux change was mainly caused by the pore size change at the pH value larger than pKa, while that was caused by both the pore size change and the electroviscous effect when pH value was smaller than the pKa, and the pore size change was caused by the ionization of the ? COOH in the copolymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号