首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《分离科学与技术》2012,47(12):1768-1776
The fructan separation from a model sugar solution and natural agave juice was studied using a stirred-cell nanofiltration unit operated in concentration mode. Hydrophilic cellulose membrane with MWCO of 1000 Da was used. The experimental conditions were varied to predict the influence of pressure (0.14–0.350 MPa) and feed concentration (0.15–0.25 g/mL) on the initial permeate flux and solute retained fraction (SRF) values of the process. Response surface plots (p < 0.05) showed that the permeate flux and SRF increased significantly with the pressure and decreased with feed concentration. The permeate flux varied from 0.5 to 4.1 L · h?1 · m?2. The fructan retained fraction in model sugar solution varied from 0.85 to 0.97 whereas fructose, glucose and sucrose presented similar SRF values ranging from 0.38 to 0.65. Promising results were obtained when natural agave juice was used.  相似文献   

2.
This study evaluated the influence of wall material concentration (10–30%), inlet temperature (135–195°C), and feed rate (0.5–1.0 L · h?1) on the properties of rosemary oil microencapsulated by spray-drying, with gum arabic as carrier. Powder recovery, surface oil, oil retention, and hygroscopicity varied from 17.25%–33.96%, 0.03%–0.15%, 7.15%–47.57%, and 15.87%–18.90%, respectively. The optimized conditions were determined to be a wall material concentration of 19.3%, an inlet air temperature of 171°C, and a feed flow rate of 0.92 L · h?1. At this condition, particles presented no fissures and the compositions of pure and microencapsulated oil were similar. The sorption isotherms could be described by the GAB model.  相似文献   

3.
《分离科学与技术》2012,47(5):690-698
A range of activated carbon adsorbents have been assessed as pretreatment for microfiltration-based indirect potable reuse (IPR) pilot plant to evaluate the impact on combined membrane fouling and organics removal. Isotherm adsorption analysis showed wide variation between the different adsorbent materials with regards to organics removal and kinetics, and the removal for most of the reagents tested was found to be significantly influenced by temperature. The two commercial adsorbents with the highest removal rates and fastest kinetics were then each evaluated as pretreatment at pilot scale over a six hour period at two doses (5 and 25 mg/l) and operational fluxes (40 and 50 L m?2 h?1), based on a hollow fibre membrane module. One of the adsorbents provided a reduction in the irreversible fouling rate, and both were found to significantly improve the removal of organics.  相似文献   

4.
《分离科学与技术》2012,47(12):2840-2869
Abstract

This work addresses the applicability of different membrane pore blocking models for the prediction of flux decline mechanisms during dead end microfiltration (MF) of stable oil-in-water (o/w) emulsions using relatively low-cost ceramic membranes. Circular disk type membranes (52.5 mm diameter and 4.5 mm thickness) were prepared by the paste method using locally available low-cost inorganic precursors such as kaolin, quartz, calcium carbonate, sodium carbonate, boric acid, and sodium metasilicate. Characterization of the prepared membrane was done by SEM analysis, porosity determination, and pure water permeation through the membrane. Hydraulic pore diameter, hydraulic permeability, and hydraulic resistance of the membrane was evaluated as 0.7 µm, 1.94 × 10?6 m3/m2·s·kPa and 5.78 × 1011 m2/m3, respectively. The prepared membrane was used for the treatment of synthetic stable o/w emulsions of 40 and 50 mg/L crude oil concentration in batch mode with varying trans-membrane pressure differentials ranging from 41.37 to 165.47 kPa. The membrane exhibited 96.97% oil rejection efficiency and 21.07 × 10?6 m3/m2·s permeate flux after 30 min of experimental run at 165.47 kPa trans-membrane pressure for 50 mg/L oil concentration. Different pore blocking, models such as complete pore blocking, standard pore blocking, intermediate pore blocking and cake filtration were used to gain insights into the nature of membrane fouling during permeation. The observed trends for flux decline data convey that the decrease in permeate flux was initially due to intermediate pore blocking (during 1 to 10 minutes of experimental run) followed with cake filtration (during 10 to 30 minutes of experimental run). Based on retail prices of the inorganic precursors, the membrane cost was estimated to be 130 $/m2. Finally, preliminary process economic studies for a single stage membrane plant were performed for the application of the prepared membrane in industrial scale treatment of o/w emulsions. A process economics study inferred that the annualized cost of the membrane plant would be 0.098 $/m3 feed for treating 100 m3/day feed with oil concentration of 50 mg/L.  相似文献   

5.
Polyvinylidene fluoride (PVDF)/polyvinyl alcohol (PVA) ultrafiltration (UF) membranes were prepared via a phase inversion method employing the modification of carboxylated multiwalled carbon nanotubes (MWCNTs‐COOH). Various contents of MWCNTs‐COOHs (0.00–0.15 wt%, weight of casting solution) were added into PVDF/PVA/dimethyl sulfoxide systems for the fabrication of the plate UF membrane. Fourier transform infrared spectroscopy spectra identified the successful introduction of carboxyl through the C?O peak at 1730 cm?1. Scanning electron microscopy images exhibited the external surface and the asymmetric morphology with the appearance of a sponge‐like inner structure. Atomic force microscopy analysis determined the roughness values and rougher topography. The hydrophilicity of the composite membrane containing 0.09 wt% of MWCNTs‐COOHs improved the most. This sample has the highest pure water flux, approximately doubled (126.6 L·m?2·h?1) compared to the PVDF/PVA membrane (68.6 L·m?2·h?1), an enhanced bovine serum albumin flux recovery rate, showing an increase of 17%, and the best fouling resistance ability. Meanwhile, the porosity and dynamic contactangle also indicate the enhancement of membrane hydrophilicity. Dextran (DEX) 600k rejection reached 91.0%. Break strength, elongation at break, and Young's modulus also had improvements of 60%, 215.5%, and 56.7%, respectively, when the MWCNTs‐COOH content was 0.12 wt%. POLYM. ENG. SCI., 56:955–967, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3×105 L·m?2·h?1·Pa?1). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.  相似文献   

7.
Two ultrafiltration membranes with different geometries (spiral polymeric and tubular ceramic) but similar cutoffs were used to treat wastewater from a food industry. Hydrodynamic conditions were optimized by statistical methods as a strategy to get more accurate values of the critical parameters and then to produce higher water flux and minimization of membrane fouling. The validation of the optimization method was obtained by experimental critical flux determination at critical parameters. Membrane fluxes revealed significant differences during filtration. The polymeric membrane showed an optimal flux of 45.60 Lh?1 m?2 at 3.21 bar while operating at a stable time of 11.61 h, whereas optimal flux of the ceramic membrane was 32.43 Lh?1 m?2 at 3.98 bar for 16.03 h. Experimental critical flux values were only slightly lower than optimal fluxes for both membranes, showing the validity of the statistics models applied. Negligible osmotic pressure was found on the two membranes at critical flux parameters, indicating irreversible fouling for both cases. The polymeric membrane revealed strong fouling behavior and the ceramic membrane showed a weak form; the flux decline occurred first in the polymeric membrane, whereas the ceramic membrane exhibited high stability during the filtration operations. A high degree of purification of wastewater was obtained by this membrane at critical flux conditions.  相似文献   

8.
Polymeric membranes have been widely used in the separation of aqueous system, but there were few studies on the organic solvent-resistant microfiltration (MF) membranes. In this study, organic solvent-resistant oxidized poly(arylene sulfide sulfone)-6 (O-PASS-6) nanofibrous MF membrane with high water flux was prepared through electrospun technology, cold-press, and oxidation treatment. The O-PASS-6 nanofibrous MF membrane was made from the interwoven electrospun uniformly 295 nm nanofibers, and the mean pore size was 0.44 μm. The morphology, chemical structure, and aggregation structure of O-PASS-6 nanofibrous MF membrane were characterized systematically by the scanning electron microscope, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Investigations on the weight loss, swelling ratio, and microstructure change all revealed that the O-PASS-6 membrane had superior stability in strong polar solvents, such as 1,3-dimethyl-2-imidazolidinone (DMI), dimethylformamide (DMF), and tetrahydrofuran (THF). MF performance results showed that the pure water flux of O-PASS-6 nanofibrous membrane was up to 753.34 L·m−2·h−1, and the rejection ratio was 99.9% to 0.2 μm particles. More importantly, after treated by aggressive solvents, the membranes still possessed good MF performance: the water flux was 770.08, 775.66, and 766.36 L·m−2·h−1 when soaked in DMI, DMF, and THF for 7 days, respectively, and high rejection ratio also maintained (>99%) for both particles investigated. The O-PASS-6 membrane with good solvent resistance proved to be a promising candidate as a prefiltration membrane to eliminate submicron particles in both sewage and aggressive solvents. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48506.  相似文献   

9.
《分离科学与技术》2012,47(13):3417-3431
Abstract

The application of anaerobic submerged membrane bioreactors was studied for the treatment of wastewaters containing suspended solids. A mesophilic and a thermophilic reactors were operated with a synthetic wastewater. The thermophilic reactor achieved higher volumetric loading rates than the mesophilic reactor, reaching 14 g COD/L · d (0.47 g COD/g VSS · d). The mesophilic reactor showed signs of overload, when reaching a volumetric loading rate of 10 g COD/L · d (0.32 g COD/g VSS · d). Cake formation was identified as the main factor governing applicable flux. Low levels of irreversible fouling were observed in both reactors. Low fluxes were attained and gas sparging was ineffective in increasing the critical flux.  相似文献   

10.
《分离科学与技术》2012,47(15):3033-3050
Abstract

The present work deals with the concentration and the separation of Arthrospira platensis from a diluted culture medium. Among the different ways to operate this liquid/solid separation, this paper is focused on the membrane alternative. The general framework of this experimental study is the MELISSA project from the European Space Agency (ESA) for the development of life support systems in Space. The performances of fourteen inorganic membranes (microfiltration and ultrafiltration) were evaluated. According to the results, the operating conditions and the influence of phycocyanin and exopolysaccharides on the fouling phenomenon were investigated on the best membrane. A critical aspect to monitor along the process is the quality of the product in terms of composition of the main cell macro‐components, such as proteins and exopolysaccharides. The ultrafiltration membrane ATZ‐50 kD exhibited the best permeation flux and cleanability. An increase of fluid velocity and transmembrane pressure is energy‐consuming. A good compromise between this consideration and the gain in terms of permeation flux is close to 3 m · s?1 and 2 · 105 Pa with the selected membrane and with a cyanobacteria suspension concentration ranging from 50 mg · L?1 to 1 g · L?1.  相似文献   

11.
We present a simple approach for preparing mesoporous carbon membranes on macroporous fly-ash-based ceramic supports via sol-gel polymerization of resorcinol with formaldehyde. The support was dip-coated and dried at 45°C under ambient pressure without a special drying process. The mesoporous carbon membrane was obtained after carbonization under a nitrogen atmosphere. The coating–pyrolysis process only required one cycle. The graphitization degree increased with carbonization temperature, as shown by X-ray diffraction. However, Raman spectroscopy revealed that defects emerged at high carbonization temperature. Scanning electron microscopy clearly showed the mesoporous carbon layer and macroporous support, a uniform carbon layer with thickness less than 1 µm forming on the support. The obtained carbon membrane shows uniform pores and high mesopore volume. The flux of pure water through the mesoporous carbon membrane was as high as 167 L · m?2 · h?1 · bar?1. The molecular weight cutoff of this membrane was found to be about 20,000 Da.  相似文献   

12.
BACKGROUND: This work was carried out to investigate and analyze the interrelated dynamics of mass transport, membrane fouling and flux decline during nanofiltration of tartrazine. A combined application including pore diffusion transport model and a material balance approach was used to model an experimental flux data obtained from different values of pH (3, 5, 7 and 10), feed‐dye concentration (25, 100 and 400 mg L?1), and transmembrane pressure (1200, 1800 and 2400 kPa). RESULTS: Almost 100% dye solution removal and a permeate flux of 135 L m?2 h?1 were obtained for 25 mg L?1 and 1200 kPa at pH 10. At pH 10, lower membrane fouling was obtained due to the increase of electrostatic repulsion between anionic dye molecules and the more negatively charged membrane surface. Flux decline and membrane fouling increased together with transmembrane pressure and dye concentration. Fouling was found to be directly related to proportional‐permeation coefficient (kO′) of dye which was identified as the solute passing into the permeate with respect to the amount transported into the membrane from the feed. CONCLUSIONS: For a decrease of pH (10 to 3) and transmembrane pressure (2400 to 1200 kPa) or an increase of feed‐dye concentration (25 to 400 mg L?1), fewer dye molecules passed into the permeate with respect to the amount transported into the membrane from the feed. This situation depended mainly on the combined influences of the gel layer and fouling in the membrane. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
《分离科学与技术》2012,47(3):420-427
In this article, the composite polydimethylsiloxane (PDMS) membranes supported by cellulose-acetate (CA) microfiltration membrane were successfully prepared by adding nano-fumed silica particles modified with a silane coupling reagent, NH2-C3H6-Si(OC2H5)3. The effects of silica content, feed concentration, and feed temperature on the pervaporation performances of the nano-composite PDMS membranes were investigated for recovering ethanol from aqueous solution by pervaporation. It was found that adding the modified silica particles significantly improved the pervaporation performances of the composite membranes. When the silica content in the membrane was 5 wt%, for a 5 wt% ethanol/water mixture at 40°C, the permeation flux of the membrane maintained about 200 g · m?2 · h?1 and separation factor reached the maximum value of 19.  相似文献   

14.
Outer‐selective thin‐film composite (TFC) hollow fiber membranes offer advantages like less fiber blockage in the feed stream and high packing density for industrial applications. However, outer‐selective TFC hollow fiber membranes are rarely commercially available due to the lack of effective ways to remove residual reactants from fiber's outer surface during interfacial polymerization and form a defect‐free polyamide film. A new simplified method to fabricate outer‐selective TFC membranes on tribore hollow fiber substrates is reported. Mechanically robust tribore hollow fiber substrates containing three circular‐sector channels were first prepared by spinning a P84/ethylene glycol mixed dope solution with delayed demixing at the fiber lumen. The thin wall tribore hollow fibers have a large pure water permeability up to 300 L m?2 h?1 bar?1. Outer‐selective TFC tribore hollow fiber membranes were then fabricated by interfacial polymerization with the aid of vacuum sucking to ensure the TFC layer well‐attached to the substrate. Under forward osmosis studies, the TFC tribore hollow fiber membrane exhibits a good water flux and a small flux difference between active‐to‐draw (i.e., the active layer facing the draw solution) and active‐to‐feed (i.e., the active layer facing the feed solution) modes due to the small internal concentration polarization. A hyperbranched polyglycerol was further grafted on top of the newly developed TFC tribore hollow fiber membranes for oily wastewater treatment. The membrane displays low fouling propensity and can fully recover its water flux after a simple 20‐min water wash at 0.5 bar from its lumen side, which makes the membrane preferentially suitable for oil‐water separation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4491–4501, 2015  相似文献   

15.
Silica‐filled polydimethylsiloxane (PDMS) composite membranes are prepared on a polytetrafluoroethylene support structure. The structure and the performance of the membranes are characterized by scanning electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction, and thermogravimetry. The pervaporation process for acetic/water separation is performed within the PDMS membranes. The vulcanization temperature was found to have a great influence on the separation performance of the membrane. The addition of silica can significantly improve the pervaporation flux and enhance the thermal stability of the membrane. With an increase in the feed temperature, selectivity decreases and permeation flux increases. Performed with a pure PDMS membrane vulcanized at 30°C, the separation factor at first will increase, then decrease when the feed flow rate was increased from 14 to 38 L · h?1. The maximum separation factor is achieved when the feed flow rate is 26 L · h?1. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
Development and use of novel membranes for forward osmosis (FO) applications have gained popularity throughout the world. To enhance FO membrane performance, a novel thin-film nanocomposite membrane was fabricated by interfacial polymerization incorporating Fullerenol (C60(OH)n) nanomaterial, having n in the range of 24–28 into the active layer. Different concentrations of fullerenol loading (100, 200, 400, and 800 ppm) were added to the top skin layer. The structural and surface properties of the pure thin-film composite membrane (TFC) and fullerenol-incorporated thin-film nanocomposite (FTFC) membranes, were characterized by ATR-FTIR, SEM, and AFM. FO performance and separation properties were evaluated in terms of water flux, reverse salt flux, antifouling propensity, water permeability and salt permeability for all TFC and FTFC membranes. Osmotic performance tests showed that FTFC membranes achieved higher water flux and reverse salt flux selectivity compared with those of TFC membranes. The FTFC membrane with a fullerenol loading of 400 ppm exhibited a water flux of 26.1 L m?2 h?1 (LMH), which is 83.03% higher than that of the TFC membrane with a specific reverse salt flux of 0.18 g/L using 1 M sodium chloride draw solution against deionized water in FO mode. The fullerenol incorporation in FTFC membranes also contributed to a decreased fouling propensity.  相似文献   

17.
Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a critical step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L穖-2-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.  相似文献   

18.
Design and preparation of membranes with ultrahigh separation performance and antifouling property for oil-in-water (O/W) emulsions remains challenging. In this study, a high flux mullite/TiO2 ceramic composite membrane was prepared via multi-precipitation of TiO2 on a whisker mullite hollow fiber support synthesized by combining phase inversion and high-temperature sintering techniques. The results showed that the generated whisker mullite structure improved the permeation flux, and the micro-nano structured TiO2 functional layer endowed the membrane surface with superhydrophility and stability. The retention of the optimal composite membrane (M20T13) that was soaked in the titanium solution 20 times for 13 min each time for the O/W emulsions like n-hexane, toluene and engine oil maintained over 98 %, and the flux after 6 h filtration was 668.34 L·m−2·h−1, 487.25 L·m−2·h−1 and 258.66 L·m−2·h−1, respectively, much higher than that of the optimal substrate (F3A1, mass ratio of fly ash: Al2O3 = 3:1). Moreover, the flux recovery rate of M20T13 was much higher than that of F3A1 after chemical backwashing. This work manifests great potential in O/W treatment fields.  相似文献   

19.
《分离科学与技术》2012,47(2):273-285
Abstract

Membrane fouling has been regarded as one of the biggest challenges to widespread application of membrane bioreactor (MBR). This study focuses on minimizing the membrane fouling and improving the performance of submerged membrane bioreactor (SMBR) by porous sponge addition. The effects of sponge addition on sustainable flux and membrane fouling were investigated. Acclimatized sponge could significantly increase the suspended growth in SMBR with biomass of 16.7 g/L(sponge). With the sponge volume fraction of 10%, SSMBR could enhance sustainable flux up to 50 L/m2 · h compared with sustainable flux of SMBR (only 25 L/m2 · h). SSMBR also exhibited excellent results in terms of DOC removal (over 95%), COD removal (over 97%), lower transmembrane pressure development, and oxygen uptake rate. Over 89% of NH4‐N and 98% of PO4‐P were removed when SSMBR was operated with a MLSS concentration of 15 g/L.  相似文献   

20.
Injecting air into hollow fibers and tubular membranes has been proved to be effective in order to control flux decline caused by concentration polarization and particle deposition. This paper presents a study of the characteristics of filtration with inter‐fiber two‐phase flow. The enhancement of flux by bubbling, the effect of the total superficial velocity and gas and liquid velocities, the effect of fiber spacing and orientation, and the concept of critical flux were investigated. A specially designed crossflow hollow fiber cell connected to a light microscope and video‐camera system has been used to monitor particle deposition on the fibers. The results showed that injecting air could enhance the permeate flux and control the deposition of particles on the membrane fibers. Changes in the hydrodynamics of two‐phase flow considerably affected the filtration resistance caused by reversible fouling but was ineffective for the resistance caused by irreversible fouling. The extent of deposition was mainly controlled by the flux level in the range of wall shear rates examined. A critical flux of about 10 dm3 m−2 h−1 was identified through direct observation of particle deposition on fibers. This value correlated with the flux at which the irreversible fouling became negligible. These results should be significant for optimizing the operation of submerged membrane bioreactor wastewater systems in which bubbling is used as a hydrodynamic technique to improve the performance of the membrane process. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号