首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Waste chloride pickle liquors from hot-dip galvanizing plants, steel plants and flue dust contain reasonable amounts of heavy metals such as Zn, Cr, Ni, etc. Iron is invariably associated with most of these materials and comes into solution during leaching. Thus, the synergistic extraction of zinc(II) and iron(III) from leach solutions in tri-n-butyl phosphate (TBP)–di(2-ethylhexyl) phosphoric acid (D2EHPA) system diluted in kerosene was investigated. The Zn and Fe concentrations in the leach liquor used in the present study were 2 g/L. Experiments were carried out in the pH range of 0.5–4.0, temperature of 25°C, using sole D2EHPA, sole TBP and D2EHPA–TBP mixtures at different ratios. Results showed that the co-extraction of zinc(II) and iron(III) increased with increasing equilibrium pH using D2EHPA. It is demonstrated that the mixtures of TBP and D2EHPA are more efficient and selective than D2EHPA alone. At low pH values, the separation factor is low when pure D2EHPA is used as an extractant; however, using TBP as a synergist, the separation factor increases and results in a better separation of zinc from iron. Increasing TBP to D2EHPA ratios in the organic phase caused a slight shift to the right in the extraction isotherm of iron and a marked shift to the right in the extraction isotherm of zinc, and the maximum separation factor of 13.3 × 103 was achieved at a TBP to D2EHPA volume ratio of 4:1 (0.58 M TBP: 0.12 M D2EHPA). Furthermore, the effect of equilibrium pH, organic to aqueous phase ratio and Cl? concentration on the selective extraction was investigated. Using two extraction stages at the O/A ratio of 2:1 and pHe (equilibrium pH) of 3 and 1 for zinc and iron, respectively, 99% of zinc(II) and 96.25% of iron(III) were extracted.  相似文献   

2.
The extraction of Cd(II), Cu(II) and Zn(II) from 0.1 mol dmminus3 aqueous nitrate solutions with bis(2,4,4-trimethylpentyl)phosphinic acid (HBTMPP) dissolved in Isopar-H has been studied with relation to the total extractant concentration, the equilibrium pH and the total metal concentration in the aqueous phase.

The stoichiometry of the extracted species and their equilibrium constants have been determined by graphical and numerical methods and appear to be CdA2 (HA)2 and CdA2 (HA)3 for Cd(II), CuA2(HA)2 for Cu(II) and ZnAzHA and ZnAz(HA)2 for Zn(II). The extraction efficiency follows the order Zn(II)<Cu(II)<Cd(II)  相似文献   

3.
仲辛基苯氧乙酸萃取Zn(II)的性能   总被引:4,自引:0,他引:4  
研究了一种新型萃取剂仲辛基苯氧乙酸(CA–12)的皂化以及从盐酸介质中萃取Zn(II)的性能. 考察了萃取温度、平衡水相酸度、萃取剂浓度等因素对萃取的影响. 氨水皂化CA–12的最佳条件是使用含有1.0 mol/L NaCl的稀氨水制皂、皂化率为80%;分配比随平衡水相酸度的增加而减小,且lgD与pH呈线性关系,其斜率约为2;分配比随萃取剂初始浓度的增大而增大;初始酸度pH=6.0~6.5、萃取剂初始浓度CHA>0.10 mol/L时,水相中0.01 mol/L Zn(II)几乎被定量萃取. 计算得到了CA–12从盐酸介质中萃取Zn(II)的过程热效应DH=3.28 kJ/mol.  相似文献   

4.
《分离科学与技术》2012,47(6):1283-1303
Abstract

A liquid emulsion membrane (LEM) system for vanadium (IV) transport has been designed using di‐2‐ethylhexyl phosphoric acid (D2EHPA), dissolved in n‐dodecane as carrier. The selection of extractant, D2EHPA, was made on the basis of conventional liquid‐liquid extraction studies. The work has been undertaken by first carrying out liquid‐liquid extraction studies for vanadium (IV) to get stoichiometric constant (n), and equilibrium constant (Kex), which are important for process design.

Transport experiments were carried out at low vanadium (IV) concentration (ppm level). The studies on liquid emulsion membrane included i) the influence of process parameters i.e. feed phase pH, speed of agitation, treat ratio, residence time and ii) emulsion preparation study i.e., organic solvent, extractant concentration, surfactant concentration, internal strip phase concentration. When the strip phase concentration was 2 mol/dm3 (H2SO4) and feed phase pH 3 better extraction of vanadium was obtained. Higher Vm/V1 gave higher extraction of vanadium (IV). A simplified, design engineer friendly model was developed.  相似文献   

5.
LIX 622 diluted with kerosene was used to co-extract copper (II) and molybdenum (VI) from acidic sulphate solutions. The influence of equilibrium pH and extractant concentration on metal co-extraction has been studied. The extraction of both metals is sensitive to equilibrium pH; however, molybdenum is extracted preferably to copper at acidic pH values. For aqueous phases containing both metals, conditions were established for the co-extraction, selective stripping of copper and molybdenum and NH3 removal from the stripped organic solution.  相似文献   

6.
The extraction and stripping of Co(II), Ni(II), Cr(III) and Fe(III) from aqueous solutions by rosin dissolved in toluene has been investigated. Results obtained show that rosin is better extractant than abietic or n-lauric acids under comparable conditions. From these results, and the data of Mn(II) solvent extraction studied previously under the same conditions, a separation and concentration process for these five cations in aqueous solutions has been designed. Saturated solutions of Fe(III), Cr(III), Mn(II) and finally Co(II) and Ni(II) have been obtained successively by extraction and stripping, by addition of ammonium hydroxide to obtain the appropriate pH value, and by modifying adequately the organic phase/aqueous phase volume ratio.  相似文献   

7.
The mechanism of solvent extraction of palladium (II) from aqueous ammonium chloride solution with α-butylthiolauric acid( α-BTLA = S) in toluene was investigated in terms of extraction equilibrium and kinetics at 303 K. From the results of extraction equilibrium, it was found that α-BTLA behaves as a solvating extractant for palladium(II) and that the extracted species is a 1:2 metal:reagent complex, PdCl2S2 The extraction rate of palladium(II) was measured in a batch-type vigorously stirred cell. The effects of the concentrations of palladium(I I), hydrogen ion, chloride ion and extractant on the extraction rate were quantitatively interpreted by a reaction mechanism where the parallel reactions of α-BTLA with PdCl3(H20)- and PdCl4 2- are the rate-determining steps.  相似文献   

8.
ABSTRACT

The extraction of Zn(II), Cu(II) and Cd(II) from nitrate solutions at 0.1 M ionic strength by impregnated resins containing di(2-ethylhexyl)phosphoric acid has been studied at 25 °C.

The distribution coefficient was determined as a function of both pH and extractant concentration in the resin phase. The data were analyzed graphically using the slope analysis method, and numerically using the program LETAGROP-DISTR. The composition of the extracted species in the resin phase has been determined.

Analysis of the results showed that the extraction of these metal ions can be explained assuming the formation of metal complexes in the resin phase with a general composition ML2(HL) q where q takes different values depending on the metal. An extraction reaction is proposed and the extraction constants of these species are given.

Finally, a comparison between the extraction of Zn(II), Cu(II) and Cd(II) by di(2-ethylhexyl)phosphoric acid into Amberlite XAD2 and the extraction using organic solvents has been made.  相似文献   

9.
In this work, we used deep eutectic solvent (DES) composed of decanoic acid and lidocaine, which is characterized as a green solvent, for separation of Fe (III), which is the most-used metal in the world, and Mn (II), which is currently being used in many industries. We found that the pH of the initial metal solution strongly influenced the extraction mechanism. Fe (III) can be extracted at pH 1.0–2.0 due to the ion pair reaction between Fe3+ and decanoic anion, while at higher pH, the extraction mechanism cannot be evaluated due to formation of precipitation at the aqueous phase. In the case of Mn (II), the ion pair reaction occurred at pH of lower than 2.2 and higher than 3.5, while from pH 2.2 to 3.5, the cation exchange between Mn2+ and lidocaine cation probably dominated the extraction process. The DES concentration needed to reach the complete separation of Fe (III) was about 25 g/L, while Mn (II) was completely extracted using about 300 g/L of DES. The selectivity of this method was very high when was applied in the separation of Fe (III) from Mn (II).  相似文献   

10.
The study was conducted to optimize the selective extraction and recovery of Cu(II) in the presence of Zn(II) and Ni(II) from the leach liquor of waste printed circuit boards (PCBs). The extraction experiments were carried out according to 24 factorial design of experiment to optimize the extraction factors. The design was analyzed using MINITAB to determine the main effects and interactions of the chosen extraction factors. The factors chosen were: extraction pH, amount of Cyanex 272 in dispersed phase during MC-Xs preparation, amount of MC-Xs and temperature. The pH, amount of MC-Xs and temperature were found to be statistically significant. The optimized experimental conditions for the Cu(II) extraction in presence of Zn(II) and Ni(II) were extraction pH 6.0, amount of Cyanex 272 in dispersed phase 3 g, amount of MC-Xs 2.5 g and Temperature 45 °C. Factorial design of experiment was also carried out to determine the Cu(II) stripping factors from the loaded MC-Xs using H2SO4 solution. The liquid-liquid extraction Cu(II) was conducted with the prime aim to evaluate the nature of Cu(II) complex extracted by Cyanex 272. Results showed that the extraction species is [Cu(HA2)(Ac)·2HA]. Finally, a complete process for the separation and recovery of Cu(II), Zn(II) and Ni(II) from the leach liquor of waste PCBs was conducted based on the optimized experimental condition and effect of pH on extraction.  相似文献   

11.
《分离科学与技术》2012,47(15):2131-2141
Abstract

Tris(2-ethylhexyl)phosphate is proposed as an extractant for the solvent extraction of zinc and copper salicylate. The optimum extraction conditions are established by studying the various experimental parameters such as pH, sodium salicylate concentration, tris(2-ethylhexyl)phosphate concentration, equilibration period, and various diluents. The probable extracted species as ascertained by log D-log C plots is Zn(HSal)22T2EHP and Cu(HSal)22T2EHP. The method permits mutual separation of zinc and copper and can be used for separation and determination of zinc and copper in environmental and pharmaceutical samples.  相似文献   

12.
ABSTRACT

A new Schiff base extractant, N,N'-bis[l-phenyl-3-methyl-5-hydroxy-pyrazole-4-benzylidenyl]-l,3-propylene diamine (H2A) was synthesized and characterized. The extraction mechanism of palladium(II) from HNO3 or HClO4 medium with H2A in chloroform or toluene was investigated. The influences of the Schiff base concentration in the organic phase, the concentration of palladium, the pH and anions (Cl?, S04 ?, NO3 ?, ClO4 ?) in the aqueous phase and the temperature on the distribution ratio for palladium (II) have been examined. The extracted complex has been confirmed by chemical analysis, thermoanalyses and IR spectroscopy. It was found that palladium is extracted according to the following extraction reaction:

The extraction equilibrium constants of palladium(II) were 8·4 and 21·3 in chloroform and toluene diluents, respectively. The values for the enthalpy and standard free energy of extraction were also obtained. The separation of Pd(II) from the mixed solution of Pd(II)-Pt(IV) was achieved by adjusting the pH.  相似文献   

13.
Separation of zinc(II) and copper(II) ions from aqueous solutions by synergistic extraction and transport through polymer inclusion membranes (PIMs) has been investigated. A mixture of trioctylphosphine oxide (TOPO) and trioctymethylammonium chloride (Aliquat 336) was used as a selective extractant as well as an ion carrier in polymer membranes. The effects of hydrochloric acid concentration in the aqueous phase and extractants concentration in the organic phase on the separation process of zinc(II) and copper(II) ions have been studied. Zn(II) ions were successfully separated from Cu(II) ions in solvent extraction process using 0.025 M TOPO and 0.06 M Aliquat 336 in kerosene. Polymer inclusion membranes (PIMs) containing a mixture of TOPO and Aliquat 336 as the ion carrier have been prepared and the facilitated transport of Zn(II) and Cu(II) ions has been studied. The influence of membrane composition on the transport kinetic of Zn(II) and Cu(II) has been evaluated. Zn(II) ions were preferably transported from the aqueous solutions containing Cu(II) and above 87% of Zn(II) ions were effectively recovered from the 0.5 M HCl solution as the source phase through PIM into 0.5 M H2SO4 as the stripping phase.  相似文献   

14.
ABSTRACT

Selective liquid-liquid extraction of Au(III) from aqueous chloride media (1 mol/L NaCl) into cumene by thiourea derivatives namely 2a-c (N-thiocarbamoylbenzamidine derivatives), 3a-f (N-benzoylthiourea derivatives) has been investigated in detail. Marked differences in the metal extraction are noted using these organic compounds with respect to their structural variation. The extraction behaviour of Au(III) with extractants 2a-c and 3a-f followed the order : 2b> 2a>2c and 3e≈ 3c≈ 3d >3a >3f≈3b, respectively. The organic reagent 2a and 3c were selected for further detailed studies owing to their better strippability behaviour. Optimum conditions such as structure of the organic extractant, aqueous phase pH, diluent, time of equilibration, metal concentration, extractant concentration, effect of other metal cations were established for extraction separation of Au(III). Experimental data have been treated graphically and numerically by means of the computer programme LETAGROP-DISTR, and can be explained by assuming the formation of the species AuCl3L and AuCl3L2 for 2a-c and AuCl3L2 for 3a-f derivatives. The lack of interference from even appreciable amounts of possible base metals such as Cu(II), Zn(II) and Fe(III) may be considered an outstanding advantage of the method for separation of gold from these metals using 2a and 3c.  相似文献   

15.
ABSTRACT

The extraction of Ni(II) from 1.0 mol-dm-3aqueous NaNO3medium by di-(2-ethylhexyl) phosphoric acid (HDEHP) dissolved in toluene has been studieo as a function of the total extractant concentration, the equilibrium pH and the total raetal concentration in the aqueous phase. Nickel distribution data have been interpreted in terms of the formation of NiR2(HR)2, and NiR2species in the organic phase in the low pH range anc by the formation of Na-HUEHP micelles, due to the neutralization of the reagent in the organic phase, and the further exchange of Na+by Ni2+in these micelles in the high pH range for each of the total extractant concentrations used.  相似文献   

16.
The dust collected from the waste heat boiler of a copper plant was leached with sulfuric acid and the leach liquor contained 31.63 kg/m3 Cu, 14.78 kg/m3 Fe, 2.21 kg/m3 Zn, 0.26 kg/m3 Co, 0.09 kg/m3 Ni, and 0.23 kg/m3 Cd. The iron content in the leach liquor was precipitated out using Ca(OH)2 and from the filtrate copper was extracted with the extractants LIX 84I and LIX 622N in kerosene. Extraction of copper with either extractant increased with increasing equilibrium pH and extractant concentration. The McCabe-Thiele plots for quantitative extraction of copper indicated 3-stages at O:A ratio of 3:2 with 30% extractants. The counter-current extraction study showed 0.21 kg/m3 and 6.77 g/m3 copper in the third stage raffinates of LIX 84I and LIX 622N indicating 98.64% and 99.95% extraction, respectively. For extraction of a mole of copper ion, two moles of the extractant was required to release two moles of hydrogen ion to the aqueous phase. The quantitative stripping of copper from the loaded organic phases of LIX 84I and LIX 622N with 180 kg/m3 H2SO4 was possible in 3-stages at O:A ratio of 3:1 and 3:2, respectively. The thermodynamic parameters such as ΔH, ΔG, and ΔS were calculated for both the systems. The enthalpy change (ΔH) values were positive for extraction of Cu with either extractant indicating the processes to be endothermic. The IR spectra indicated the association of phenolic-OH group of oxime molecules in the formation of copper complexes.  相似文献   

17.
《分离科学与技术》2012,47(13):3039-3046
Abstract

A macrocyclic vic‐dioxime (1) and its mononuclear Ni(II) complex (2) were studied as extractant. The aqueous solutions of Ag+, Mn2+, Pb2+, Ni2+, Cu2+, Cd2+, and Zn2+ picrates were used for extraction experiments. The solutions of the ligands in two different organic solvents were used as organic phases. The metal picrate extractions were carried out at 25±0.1°C by using UV‐visible spectrometry. The most effective transport was observed for Ag+ picrate among the tested metal picrates. The effect of pH on the extraction of Ag+ picrate was evaluated with the ligands. The ratio of extracted Ag‐complex to chloroform phase was 2:1 (L:M) for (2). In other cases the ratios were 1:1 for both (1) and (2). Molar ratio method was also used to demonstrate the composition. The values of the extraction constants (log Kex) were determined for the extracted Ag‐complexes.  相似文献   

18.
This paper reports the structural, morphological, spectroscopic, dielectric, ac conductivity, and impedance properties of nanocrystalline Mn1-xZnxFe2O4. The nanocrystalline Mn–Zn ferrites were synthesized using a solvent-free combustion reaction method. The structural analysis using X-ray diffraction (XRD) pattern reveals the single-phase of all the samples and the Rietveld refined XRD patterns confirmed the cubic-spinel structure. The calculated crystallite size values increase from 8.5 nm to 19.6 nm with the Zn concentration. The surface morphological analysis using field emission scanning electron microscopy and the transmission electron microscopy confirms the nano size of the prepared ferrites. X-ray photoelectron spectroscopy was used to study the ionic state of the atoms present in the samples. Further, the high-resolution Mn 2p, Zn 2p, Fe 2p, and O 1s spectra of Mn1-xZnxFe2O4 does not result in the appearance of new peaks with Zn content, indicating that the Zn substitution does not change the ionic state of Mn, Zn, Fe, and O present in nanocrystalline Mn1-xZnxFe2O4. The investigated electrical properties show that the dielectric constant, tan δ and ac conductivity gradually decrease with increasing Zn substitution and the sample Mn0·2Zn0·8Fe2O4 has the lowest value of conductivity at 303 K. The ac conductivity measured at different temperatures shows the semiconducting nature of the ferrites. The impedance spectra analysis shows that the contribution of grain boundary is higher compared with the grain to the resistance. The obtained results suggest that the Zn substituted manganese ferrite nanoparticles can act as a promising candidate for high-frequency electronic devices applications.  相似文献   

19.
The application of LIX 622 (oxime derivative) as an extraction reagent of molybdenum (VI) from sulfate media was studied. The extraction system was studied as a function of contact time, temperature, aqueous pH, diluent of the organic phase and metal and extractant concentrations. The extraction is exothermic and it is dependent on the organic diluent, aqueous pH and reagent concentration. The data have been analysed numerically to determine the stoichiometry of extracted species and their equilibrium constants. It was found that molybdenum was extracted into the organic phase by a complex mechanism which involves the formation of three species (MoO2L2, MoO4H3HL+HSO4 and MoO4H2HL, where L represents the extractant). Molybdenum stripping by acidic and ammonium hydroxide solutions was also studied. © 2000 Society of Chemical Industry  相似文献   

20.
ABSTRACT

The paper embodies the details on the extraction behaviour ofNi(II) along with Cr(III), Fe(ni), Mn(II), Co(II), Cu(II) and Zn(II) from sulfuric acid media employing Cyanex 301-toluene system. The effect of various parameters like concentration of acid, metal ion and extractant and nature of diluent on the extraction of Ni(II) has been studied. On the basis of the distribution data the extracting species has been proposed. The recycling capacity of the extractant has been assessed. Some binary and ternary separations have also been achieved. The practical utility of the extractant has been demonstrated by recovering Ni(II) from spent catalyst and electroplating bath residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号