首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(5):1239-1259
Abstract

The present study aims to evaluate the influence of various experimental parameters viz. initial pH (pH 0), adsorbent dose, contact time, initial concentration and temperature on the adsorptive removal of furfural from aqueous solution by commercial grade activated carbon (ACC). Optimum conditions for furfural removal were found to be pH 0 ≈ 5.9, adsorbent dose ≈ 10 g/l of solution and equilibrium time ≈ 6.0 h. The adsorption followed pseudo‐second‐order kinetics. The effective diffusion coefficient of furfural was of the order of 10?13 m2/s. Furfural adsorption onto ACC was found to be best represented by the Redlich‐Peterson isotherm. A decrease in the temperature of the operation favorably influenced the adsorption of furfural onto ACC. The positive values of the change in entropy (ΔS 0); and the negatived value of heat of adsorption (ΔH 0) and change in Gibbs free energy (ΔG 0) indicated feasible, exothermic, and spontaneous nature of furfural adsorption onto ACC.  相似文献   

2.
The present study deals with the sorptive removal of furfural from aqueous solution by carbon-rich bagasse fly ash (BFA). Batch studies were performed to evaluate the influence of various experimental parameters, namely, initial pH (p H 0), adsorbent dose, contact time, initial concentration, and temperature on the removal of furfural. Optimum conditions for furfural removal were found to be p H 0 ≈ 5.5, adsorbent dose ≈4 g/L of solution, and equilibrium time ≈4 h. The adsorption followed pseudo-second-order kinetics. The effective diffusion coefficient of furfural is of the order of 10?13 m2/s. Equilibrium adsorption data on BFA was analyzed by Freundlich, Langmuir, Dubnin-Radushkevich, Redlich-Peterson, and Temkin isotherm equations using regression and error analysis. The Redlich-Peterson isotherm was found to best represent the data for furfural adsorption onto BFA. Adsorption of furfural on BFA is favorably influenced by a decrease in the temperature of the operation. Values of the change in entropy (ΔS 0) and heat of adsorption (ΔH 0) for furfural adsorption on BFA were negative. The high negative value of change in Gibbs free energy (ΔG 0) indicates the feasible and spontaneous adsorption of furfural on BFA.  相似文献   

3.
The extraction of zinc from ammoniacal/ammonium sulphate aqueous media using LIX 54 has been studied. The metal extraction rate has been examined and also the effect of temperature on the extraction of zinc (ΔH° = −8·8 kJ mol−1). The effect of the aqueous pH, and therefore zinc ammine complex formation, on the extraction of zinc was studied. Stripping of the metal from loaded organic phases was carried out at various rates, temperatures (ΔH° = 3·2 kJ mol−1) and sulphuric acid concentrations. The results obtained were compared with others obtained from the literature wherein different extractants were used. © 1998 SCI.  相似文献   

4.
《分离科学与技术》2012,47(4):983-994
Abstract

A rapid, selective, and sensitive cloud point extraction process using mixed micelle of a nonionic surfactant, Triton X-114, and an anionic surfactant, SDS, to extract sulfide from aqueous solutions was investigated. The method is based on the color reaction of sulfide with N,N-diethyl-p-phenylenediamine (DPD) in the presence of suitable oxidizing reagent (Fe3+) in acid media and cloud point extraction of ethylene blue (EB) dye. Various factors and optimal extraction and reaction conditions like: acid, Fe3+, reagent, and surfactant concentration were studied and the analytical characteristics of the method (e.g., limit of detection, linear range, RSD%) were obtained. Linearity was obeyed in the range of 1–100 ng mL?1 of sulfide ion. The detection limit of the method is 0.5 ng mL?1 of sulfide ion. The interference effect of some anions, cations, and neutral species was also tested. The method was applied to the determination of sulfide in spring, river, and waste water samples.  相似文献   

5.
Carbon nanotubes (CNTs) were used as adsorbent to remove fulvic acids (FA) from aqueous solutions. The adsorption capacity of CNTs for FA can reach 24 mg g?1 at 5 °C and equilibrium concentration of 18 mg dm?3. The kinetic and thermodynamic parameters, such as rate of adsorption, standard free energy changes (ΔG0), standard enthalpy change (ΔH0) and standard entropy change (ΔS0), have been obtained. Acidic conditions (pH = 2–5) favor FA removal. An increase in the ionic strength or the addition of divalent cations increase the adsorption of FA dramatically (FA = 60 mg dm?3). An increase in the maximum adsorbed amount of FA was observed when treating FA in synthetic seawater. Desorption studies reveal that FA can be easily and quickly removed from CNTs by altering the pH values of the solution. Good adsorption capacity and quick desorption indicate that CNTs are a promising adsorbent to remove FA from aqueous solutions. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
Various chelating ligands have been investigated for the cloud point extraction of several metal ions. However, limited studies on the use of the Schiff base ligands have been reported. In this work, cloud point extraction behavior of copper(II) with N,N′‐bis(salicylaldehyde)Ethylenediimine Schiff base chelating ligand, (H2SALEN), was investigated in aqueous concentrated sulphate medium. The extraction process used is based on the formation of hydrophobic H2SALEN–copper(II) complexes that are solubilized in the micellar phase of a non‐ionic surfactant, i.e. ethoxylated (9.5EO) tert‐butylphenol. The copper(II) complexes are then extracted into the surfactant‐rich phase above cloud point temperature. Different parameters affecting the extraction process of Cu(II), such as equilibrium pH, extractant concentration, and non‐ionic surfactant concentration were explored. The extraction of Cu(II) was studied in the pH range of 2–11. The results obtained showed that it was profoundly influenced by the pH of the aqueous medium. The concentration factor, Cf, of about 17 with extraction efficiency of E % ≈100 was achieved. The stoichiometry of the extracted complex of copper(II) was ascertained by the Yoe–Jones method to give a composition of 1:1 (Cu:H2L). The optimum conditions of the extraction‐removal have been established as the following: (1) 1.86 × 10?3 mol/L ligand; (2) 3 wt% surfactant; (3) pH of 8 (4) 0.5 mol/L Na2SO4 and (5) temperature of 60 °C.  相似文献   

7.
《分离科学与技术》2012,47(16):2738-2748
ABSTRACT

The present study is aimed to optimized diluent type, tri-n-butyl phosphate (TBP) composition and temperature for the reactive extraction of p-nitro phenol (PNP) in two different PNP concentration ranges [(0.00036–0.00646) kmol·m?3 and (0.00646–0.01437) kmol·m?3] as found in industrial effluents. 1-Octanol is investigated as the best diluent with TBP based on COSMO-RS theory. Equilibrium study based on mass action law is performed to find the insights of extraction mechanisms, equilibrium constant (K = 295.12 k·mol?1) and stoichiometry (m:n = 1:1) as also confirmed by FTIR. Thermodynamic parameters, enthalpy (ΔH°), and entropy (ΔS°) are determined 27.51 K J mol?1 and ?50.21 J mol?1 K?1, respectively.  相似文献   

8.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

9.
ABSTRACT

We have examined the effect of bifunctional group in the same cross-linkage degree on the Li isotope fractionation in the cation exchange reaction in the aqueous solutions ranging in temperature from 278 to 333 K. For this purpose, the sulfonated pyridine-styrene-divinylbenzene resin with the cross-linkage degree of 50 wt%, embedded in porous silica beads was successfully synthesized by a typical polymerization method. The isotope separation coefficients (ε) per unit mass (ε/ΔMass) was 8.1 × 10–4 at 298 K. Therefore, the effect of bifunctional group against the ε/ΔMass value has been discussed, compared with those of previous works.  相似文献   

10.
《分离科学与技术》2012,47(6):1215-1230
Abstract

The potential to remove copper (II) ions from aqueous solutions using Na‐mordenite, a common zeolite mineral, was thoroughly investigated. The effects of relevant parameters solution pH, adsorbent dose, ionic strength, and temperature on copper (II) adsorption capacity were examined. The sorption data followed the Langmuir, Freundlich, and Dubinin‐Radushkevich (D‐R) isotherms. The maximum sorption capacity was found to be 10.69 mg/g at pH 6, initial concentration of 40 mg/dm3, and temperature of 40°C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) have also been evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The dynamics of the sorption process were studied and the values of rate constant of adsorption, rate constant of intraparticle diffusion were calculated. The activation energy (Ea) was found to be 11.25 kJ/mol in the present study, indicating a chemical sorption process involving weak interactions between sorbent and sorbate. The interaction between copper (II) ions and Na‐mordenite is mainly attributable to ion exchange. The sorption capacity increased with the increase of solution pH and the decrease of ionic strength and adsorbent dose. The Na‐mordenite can be used to separate copper (II) ions from aqueous solutions.  相似文献   

11.
Effect of temperature (5°–65°C) on the separation of 11 inorganic anions by ion interaction chromatography (IIC) was studied employing RP C18 and C PhenylHexyl columns and aqueous mobile phase: 2.8 mM NaHCO3 + 0.7 mM TBAOH (tetra-n-butylammonium hydroxide). The apparent enthalpy changes, ΔH for hydrophobic ions like I?, SCN?, and ClO4 ? largely exceeded 3 kcal/mole suggesting that added to ion exchange they are retained by hydrophobic adsorption. Unlike conventional strongly basic anion exchangers, our system can be used at elevated temperatures with alkaline eluents without irreversible damaging the column.  相似文献   

12.
An Algerian montmorillonite was modified with two organic surfactants, methyltriphenyl phosphonium bromide and n-hexyltriphenyl phosphonium bromide. The solids obtained were used as adsorbents to remove Orange II, an anionic dye from aqueous solutions. Batch experiments were conducted to study the effects of temperature (20–60°C), initial concentration of adsorbate (50–150 mg L?1) and pH of solution 6.5 on dye adsorption. Due to their organophilic nature, exchanged montmorillonites were able to adsorb Orange II at a very high level. Adsorption of Orange II for B-NHTPB and B-MTPB at different pH show that the adsorption capacity clearly decreases with an increase in pH of the initial solution from 2 to 8, this decrease being dramatic for pH > 8. This may be due to hydrophobic interactions of the organic dye with both phosphonium molecules and the remaining non-covered portion of siloxane surface. The kinetics of the adsorption was discussed on the basis of three kinetic models, i.e., the pseudo-first-order, the pseudo-second-order, and the intraparticle diffusion models. Equilibrium is reached after 30 min and 60 min for B-MTPB and B-NHTPB, respectively; the pseudo-second-order kinetic model described very well the adsorption of Orange II on modified bentonites. The non-linear Langmuir model provided the best correlation of experimental data, maximum adsorption of Orange II is 53.78 mg g?1 for B-NHTPB and 33.79 mg g?1 for B-MTPB. The thermodynamic parameters, such as free energy of adsorption (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were also determined and evaluated. From thermodynamic studies, it was deduced that the adsorption was spontaneous and exothermic.  相似文献   

13.
Decontamination of high-level Fe3+ ions from a model aqueous solution using natural inorganic Quartz (NQ) and Bentonite (NB) has been studied. The adsorption equilibrium studies are performed with a constant initial Fe3+ ion concentrations (namely 100, 200, 300 and 400 mg.L-1) and varying adsorbent weight. The adsorption percentages of Fe3+ ions increase sharply by increasing adsorbent doses, in which the adsorption percentage of Fe3+ using NB (approx. 60%) is found higher than in case of NQ (approx. 40%) in whole adsorption dosages. The maximum adsorption percentages of Fe3+ using both adsorbents are achieved within the first 60 minuets, and then desorption process is taken place. As the initial concentration of ions increases the percentage removal using NB decreases, while the adsorption using NQ is less affected by the initial concentration; it is found 40% in whole different initial concentration (50 - 400 mg.L-1). The best temperature for the maximum adsorption is found 30 - 40°C for both adsorbents. The obtained experimental data has well described by Freundlich isotherm model into both NQ and NB. The Freundlich constant Kf for the adsorption of Fe3+ using NB is greater than using of NQ for the initial concentration 400 mg.L-1. The negative value of ?G° confirms the feasibility of the process and the spontaneous nature of adsorption with a high preference for metal ions to adsorb onto NB (ΔG° = -13.9) more easily than NQ (ΔG° = -13.4).  相似文献   

14.
The extraction behavior of lanthanides and yttrium usinsg CYANEX 925 (mixture of branched chain alkylated phosphine oxides) in n‐heptane from nitrate medium has been studied. The effects of aqueous phase ionic strength, CYANEX 925 concentration in the organic phase, and temperature on Sm3+, Nd3+ and Y3+ extraction have been investigated. The extractability of the lanthanides and yttrium increases with increasing nitrate concentration, as well as with increasing CYANEX 925 concentration. An extraction mechanism is proposed based on slope analysis. Furthermore, the infra‐red spectra of CYANEX 925 saturated with lanthanides are employed to provide evidence of the composition of the complex. The relationship between the logarithm of the distribution ratio and lanthanide atomic number is also discussed which indicates that yttrium can be separated from light lanthanides. In addition separation of the light and heavy lanthanide groups is also possible using CYANEX 925. From the temperature dependence data, the thermodynamic parameters values (ΔH, ΔS and ΔG) are calculated. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

16.
Abstract

Comparative experimental studies were carried out on extraction of copper(II) cations from aqueous acid nitrate media using four LIX‐reagents, representatives of different extractant classes: LIX 984N‐I, LIX 860N, LIX 84‐I and LIX 65N. As a diluent, liquid hydrocarbon undecane was used. The extraction behavior of the LIX‐reagents was compared based on an analysis of the influence of the main factors on the two‐phase mass transfer process: aqueous pH‐value, initial copper and extractant concentrations, and temperature. The experimental data received were used in the calculation of important parameters characterizing the efficiency of copper extraction from nitrate media with different LIX reagents: distribution ratios D, concentration extraction constants K ex, pH0.5‐values, and thermodynamic parameters such as enthalpy, entropy, and free energy changes (ΔH 0, ΔS 0, ΔG 0‐values).  相似文献   

17.
The micellization behaviour of sodium dodecyl sulphate, sodium dodecylbenzenesulfonate, hexadecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, and cetylpyridinium chloride in water and in aqueous solutions of polyethylene oxide (PEO, molecular weight = 100,000) having concentrations (0.005–0.04 %, w/v) has been studied at different temperatures (288.15–318.15 K) using conductivity, surface tension, and viscosity methods. From conductivity measurements various micellar parameters, like critical micellar concentration (CMC), critical aggregation concentration (CAC), polymer saturation point (PSP), degree of ionization (β), and standard free energy of transfer ( \( \Delta G_{t}^{0} \) ), have been calculated. CAC values have been found to decrease with polymer concentration and increase with temperature. However, the PSP values increase with both polymer concentration and temperature for all surfactants. Similar parameters have also been calculated from surface tension data (CMCσ, CACσ, PSPσ) along with other parameters such as maximum surface excess concentration at the air/water interface ( \( \Gamma_{\hbox{max} } \) ), minimum area per molecule (A min), and packing parameter (p). The CMCσ, CACσ, and PSPσ values are smaller than the corresponding CMC, CAC, and PSP values, but both show similar behaviour with temperature and concentration of polymer. Various parameters indicate that the presence of the aromatic ring in the head group of surfactant decreases its interaction with PEO, whereas the increased hydrophobicity in the tail leads to stronger interactions with PEO. Viscosity studies further supplement the conclusions drawn from the above results.  相似文献   

18.
《分离科学与技术》2012,47(17):3325-3338
Abstract

Three surfactants, l-glutamic acid dioleyl ester ribitol (nonionic, 2C 18Δ9 GE), l-glutamic acid dioleyl ester quaternary ammonium chloride (cationic, 2C 18Δ9 GEC 2 QA), and dioleyl dimethyl quaternary ammonium chloride (cationic, 2C 18Δ9 QA) were synthesized for potential use in liquid membrane operations. These surfactants have strongly hydrophobic, twin oleyl chains as the hydrophobic moiety. Using the synthesized surfactants, extraction of rare earth metals was carried out by liquid surfactant membranes in a stirred tank. The extraction behavior of 12 kinds of rare earth metals was systematically studied with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (commercial name: PC-88A) as a carrier. Different surfactants having an identical hydrophobic moiety can have significantly different behaviors in rare earth extractions by liquid surfactant membranes, where extraction efficiency appears to be governed by the nature of the interfacial microenvironment between oil and water. An interfacial reaction model which takes into account the adsorption of a surfactant at the interface has been proposed to evaluate the permeation rate of rare earth metals by liquid surfactant membranes. It was found that a cationic surfactant strongly enhances the extraction rate of rare earth metals compared with the conventional surfactant, Span 80. The cationic surfactant 2C 18Δ9 GEC 2 QA appears to be one of the best surfactants currently available for rare earth extraction by liquid surfactant membranes.  相似文献   

19.
“Devil tree saw dust”; a novel biosorbent has been utilised successfully for the removal of hexavalent chromium from contaminated water. Batch adsorption procedure is utilised to test the ability of saw dust as an adsorbent for hexavalent chromium (reduction coupled adsorption). The contribution of various parameters on sorption, such as contact time, sorbate concentration, pH of the medium and temperature were estimated and maximum uptake of hexavalent chromium from contaminated water was 333.33 mg g?1 at pH 2.0 and temperature of 35°C. Hexavalent chromium uptake from contaminated water followed the pseudo‐first‐order rate expression. The standard free energy change (ΔG0), standard enthalpy change (ΔH0) and standard entropy change (ΔS0) have also been evaluated and it has been concluded that the sorption was feasible, spontaneous and endothermic in nature. The process follows well Langmuir isotherm. Fourier Transform Infra‐Red (FTIR) spectroscopy and scanning electron microscopy (SEM) of hexavalent chromium loaded and unloaded saw dust were performed, SEM clearly indicates chromium adsorption. FTIR spectroscopy revealed the involvement of carbonyl, hydroxyl and amide groups on the cell surfaces in chromium binding. Very good adsorption capacity and low cost or cost free of devil tree saw dust makes this biosorbent as one of the best adsorbents for removal of hexavalent chromium from contaminated water. © 2012 Canadian Society for Chemical Engineering  相似文献   

20.
A novel cationic gemini surfactant with the hydrophenanthrene structure has been synthesized from dehydroabietylamine. Its structure was confirmed by IR, 1H NMR, and elemental analysis. The critical micelle concentration (CMC) of the surfactant and its surface tension at the CMC (γ CMC) in aqueous solution were about 1.58 × 10?5 mol L?1 and 36.6 mN m?1 at 25 °C, respectively. The emulsion composed of equal amounts of benzene and an aqueous solution with 0.1 % gemini surfactant as emulsifier maintained its stability for 8.5 h. Meanwhile, the antimicrobial activities of the gemini surfactant against Pseudomonas aeruginosa, Escherichia aerogenes, and Staphylococcus epidermidis were much better than those of bromogeramine and ampicillin sodium against the same bacteria, and its minimum inhibitory concentrations (MIC) were 16, 32, and 4 μg mL?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号