首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A novel process for the recovery of c‐phycocyanin from Spirulina maxima exploiting aqueous two‐phase systems (ATPS), ultrafiltration and precipitation was developed in order to reduce the number of unit operations and benefit from an increased yield of the protein product. The evaluation of system parameters such as PEG molecular mass, concentration of PEG as well as salt, system pH and volume ratio was carried out to determine under which conditions the c‐phycocyanin and contaminants concentrate to opposite phases. PEG1450–phosphate ATPS proved to be suitable for the recovery of c‐phycocyanin because the target protein concentrated in the top phase whilst the cell debris concentrated in the bottom phase. A two‐stage ATPS process with a phase volume ratio (Vr) equal to 0.3, PEG1450 7% (w/w), phosphate 20% (w/w) and system pH of 6.5 allowed c‐phycocyanin recovery with a purity of 2.4 (estimated as the relationship of the 620 nm to 280 nm absorbances). The use of ultrafiltration (with a 30 kDa membrane cut‐off) and precipitation (with ammonium sulfate) resulted in a recovery process that produced a protein purity of 3.8 ± 0.1 and an overall product yield of 29.5% (w/w). The results reported here demonstrated the practical implementation of ATPS for the design of a prototype recovery process as a first step for the commercial purification of c‐phycocyanin produced by Spirulina maxima. © 2001 Society of Chemical Industry  相似文献   

2.
The partitioning behavior of soluble proteins from tannery wastewater using aqueous two-phase system (ATPS) was investigated. An ATPS polyethylene glycol (PEG)/MgSO4 was examined with regard to the effects of PEG molecular weight (MW) and concentration, MgSO4 concentration, pH and NaCl concentration on protein partition and extraction. The partition coefficients measured for soluble proteins were proportional to the difference in PEG concentration between the phases. The MW and concentration of PEG were found to have significant effects on protein partition and extraction with low MW PEG4000 showing the best conditions for the partitioning of protein in PEG+MgSO4+water system. Sulfate salt was chosen as the phase-forming salt because of its ability to promote hydrophobic difference between the phases. This system was operated at room temperature . Increase in pH of the system increases the partition coefficient of proteins from tannery wastewater. The addition of sodium chloride showed significant influence on the partition coefficient. ATPS comprising PEG4000-magnesium sulfate provided a means for the recovery of proteins from tannery wastewater. The maximum percentage yield of protein extracted is 82.68%.  相似文献   

3.
The potential use of aqueous two‐phase systems (ATPS) to establish a viable protocol for the in situ recovery of cyanobacterial products was evaluated. The evaluation of system parameters such as poly (ethylene glycol) (PEG) molecular mass, concentration of PEG and salt was carried out to determine the conditions under which Synechocystis sp. PCC 6803 cell and cyanobacterial products, i.e., β‐carotene and lutein, become concentrated in opposite phases. PEG‐phosphate ATPS proved to be unsuitable for the recovery of cyanobacterial products due to the negative effect of the salt upon the cell growth. The use of ATPS PEG‐dextran (6.6 % w/w PEG 3350, 8.4 % w/w dextran 66900, TLL 17.3 % w/w, VR 1.0, pH 7) and (4.22 % w/w PEG 8000, 9.77 % w/w dextran 66900, TLL 18 % w/w, VR 1.0, pH 7) resulted in the growth of cyanobacteria (Synechocystis sp. PCC 6803) and the concentration of lutein in opposite phases. However, β‐carotene was seen to concentrate in the top phase together with the biomass. The results reported here demonstrate the potential application of ATPS to establish the conditions for an extractive fermentation prototype process for the recovery of cyanobacterial products.  相似文献   

4.
《分离科学与技术》2012,47(12):2807-2823
Abstract

Purification of glucose isomerase by its partitioning in a PEG‐salt aqueous two‐phase system (ATPS) in the presence of PEG derivatives has been studied. Selective partitioning of the proteins was observed towards the PEG phase containing PEG‐benzoate and PEG‐palmitate, enriching glucose isomerase in the salt phase. Cross‐current extraction in 4 stages in the presence of PEG‐palmitate gave an enrichment factor of ~5 for the enzyme. After initial purification with ATPS, glucose isomerase was immobilized on cross‐linked chitosan beads. The immobilized enzyme was stable over a wider pH range (5.2–9.0) and showed an optimum pH of 6.5  相似文献   

5.
The extraction and back-extraction of bovine serum albumin (BSA) have been studied by liquid–liquid extraction with poly(ethylene glycol) (PEG)/potassium citrate aqueous two-phase system (ATPS). In this work, the ATPS was examined with regard to the effects of PEG molecular weight (PEG 1000, 2000, 4000 and 6000), PEG and potassium citrate concentration, BSA concentration (CBSA) and pH on BSA partition. The pH was found to have significant effects on BSA partition with low molecular weight PEG 1000. The yield of the BSA, 99%, was obtained in the top phase under the following conditions: 19% (w/w) PEG 1000, 20% (w/w) potassium citrate and 0.75 mg/g CBSA at pH 7.0 and 30 °C. BSA can be re-extracted to a new citrate phase by decreasing the pH of the system with a 92% yield. The back-extraction not only separates the BSA from the polymer, but also allows the polymer to be recycled. The global yield (Ye + Ybe) is up to 91%.  相似文献   

6.
In this study the use of an aqueous two‐phase system (ATPS) following the direct chemical extraction of a recombinant viral coat protein, from the cytoplasm of Escherichia coli, is evaluated. The driving force is the need to establish an economically‐viable process for the manufacture of a vaccine against human papilloma infection. The partition behaviour of recombinant L1 protein, the major structural protein of the virus, and DNA was investigated in a polyethylene glycol (PEG)–phosphate system. An evaluation of system parameters including PEG molecular mass and the concentrations of PEG and phosphate was conducted, to estimate conditions under which the L1 protein and DNA partition to opposite phases. ATPS extraction comprising a volume ratio of 1.00, PEG 1000 (18.0%(w/w)) and phosphate (15.0%(w/w)) provided the conditions for accumulation of DNA into the bottom phase and concentration of L1 protein into the opposite phase (ie partition coefficient of DNA; ln KDNA < 0.0 and partition coefficient of L1; ln KL1 > 2.5). The findings reported here demonstrate the potential of ATPS to recover recombinant protein released from E coli by direct chemical extraction. © 2002 Society of Chemical Industry  相似文献   

7.
In order to develop an aqueous two‐phase system (ATPS) for cephalexin synthesis with extractive bioconversion, the partitioning behaviour of cephalexin and 7‐aminodeacetoxicephalosporanic acid (7‐ADCA) in poly(ethylene glycol) (PEG)/salt ATPS were examined. Parameters such as PEG size, salt type and tie line length were investigated to find a primary extraction system. In PEG400/ammonium sulfate and PEG400/magnesium sulfate systems, the partition coefficient of cephalexin (KC) was larger than 1 while that of 7‐ADCA (KA) deviated about 1.5. Addition of neutral salts, surfactants and water‐miscible solvents were also investigated in the primary ATPS in order to improve the separation efficiency. KC greatly increased when neutral salts and surfactants were added to the PEG400/ammonium sulfate primary systems whereas KA was only slightly higher than that of the additive‐free ATPS. In an improved ATPS for extractive bioconversion, consisting of PEG400 (20% w/w), ammonium sulfate (17.5% w/w), methanol (5% w/w) and NaCl (3% w/w), a KC value of up to 15.2 was achieved; KA was 1.8; KP (partition coefficient of phenylglycine methyl ester) was 1.2 and the recovery yield of cephalexin was 94.2%. The results obtained from the extractive bioconversion of cephalexin in the improved ATPS showed that it is feasible to perform such an enzymatic process in an ATPS and the system offers the potential as a model for enzymatic synthesis of some water soluble products. © 2001 Society of Chemical Industry  相似文献   

8.
《分离科学与技术》2012,47(17):2741-2747
The extraction of propionic acid has been studied by liquid–liquid extraction with poly ethylene glycol /different salts of sulfate aqueous two-phase system (ATPS). In this study, a multilevel factorial design was applied to evaluate the effects of four independent variables (PEG molecular weight, type of salt, salt concentration, and temperature) on propionic acid extraction yield. The statistical significance of each factor was evaluated by an analysis of variance. The results indicated that the type and concentration of salt were the major contributing factors to propionic acid extraction. The PEG4000/ MnSO4 system was suitable for the extraction of propionic acid from dilute water.  相似文献   

9.
This work aimed to optimize the extraction of an extracellular protease produced by the cold-adapted yeast Rhodotorula mucilaginosa L7 using aqueous two-phase systems (ATPS) comprising polyethylene glycol (PEG) and sodium citrate or sodium tartrate. First, the biocompatibility of the phase forming agents was assessed. The results obtained with PEG-2000, PEG-4000, and PEG-6000 demonstrated that even at large PEG concentrations (32 wt%) the protease maintains its activity after 3 h of reaction, whereas an increase in salt concentration provokes a gradual decrease in protease stability. Subsequently, the partitioning of the protease in both types of ATPS was assessed, evaluating the effect of temperature, molecular weight, and concentration of PEG on protease purification, using two 23-full factorial designs. The best partitioning conditions were obtained in PEG-6000/sodium tartrate-based ATPS, at 30ºC (with a yield of 81.09 ± 0.66% and a purification factor of 2.51 ± 0.03). Thus, considering the biodegradable characteristics of the system, the PEG/sodium tartrate ATPS is a viable and economic low-resolution step in protease purification, with a strong potential for future industrial application.  相似文献   

10.
Partitioning of microbial transglutaminase (MTG) from Amycolatopsis sp. in the polyethylene glycol (PEG)/salt-based ATPS was investigated for the first time. The key parameters such as the molecular weight of PEG (PEG 600-6000), the type and concentration of phase-forming salt (ammonium sulfate or phosphates), the pH of system (pH 5.0-8.5), and the concentration of neutral salt (0-6% NaCl, w/w) were determined. The partition coefficient of the enzyme was not linear with PEG molecular weight; PEG1000 gave better yield than others. The concentration of PEG1000, ammonium sulfate and NaCl, and the system pH showed effects with different extents on specific activity (SA) and yield of the enzyme. In the ATPS of 26% w/w PEG 1000 and 19% w/w ammonium sulfate in the presence of 5% w/w NaCl and at pH 6.0, MTG was partitioned into the PEG-rich phase with a maximum yield of 86.51% and SA was increased to 0.83. The results of SDS-PAGE showed the MTG produced by the test strain differed from the enzymes reported before. Thus, this study proves that ATPS can be used as a preliminary step for partial purification of MTG from Amycolatopsis sp. fermentation broth.  相似文献   

11.
A polymer–salt-based aqueous two-phase system (ATPS) was developed for the effective extraction and purification of extracellular β-xylosidase from the fermentation broth of recombinant Bacillus megaterium MS941. The effect of molecular weight (MW) of polyethylene glycol (PEG), tie-line length (TLL), volume ratio (VR), crude loading and pH on the recovery performance was evaluated. Under the optimal extraction conditions, β-xylosidase was successfully purified up to 23-fold with a recovery yield of 99% in the bottom salt-rich phase at PEG 4,000/potassium phosphate ATPS comprising TLL of 41.8, VR of 2.3, crude loading (CL) of 30% (w/w) at pH 6.  相似文献   

12.
A simplified process for the primary recovery and purification of B‐phycoerythrin (BPE) from Porphyridium cruentum exploiting aqueous two‐phase systems (ATPS) and isoelectric precipitation was developed in order to reduce the number of unit operations and benefit from increased purity and yield of the protein product. Evaluation of the partitioning behaviour of BPE in polyethylene glycol (PEG)/sulphate, PEG/dextran and PEG/phosphate ATPS was carried out to determine under what conditions the BPE and contaminants concentrated into opposite phases. An additional stage of isoelectric precipitation at pH 4.0 after cell disruption resulted in an increase in purity of the target protein from the BPE crude extract and enhanced the performance of the subsequent ATPS. PEG1000/phosphate ATPS proved to be suitable after isoelectric precipitation for the recovery of highly purified (defined as absorbance ratio A545 nm/A280 nm > 4.0) BPE with a potential commercial value as high as US$ 50/mg. An ATPS extraction stage comprising 29.5% (w/w) PEG1000, 9.0% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, a system pH of 7.0 and loaded with 40% (w/w) of the BPE extract generated by precipitation allowed BPE recovery with a purity of 4.1±0.2 and an overall product yield of 72% (w/w). The purity of BPE from the crude extract increased 5.9‐fold after isoelectric precipitation and ATPS. The results reported herein demonstrate the benefits of the practical application of isoelectric precipitation together with ATPS for the recovery and purification of BPE produced by P. cruentum as a first step in the development of a commercial purification process. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Aqueous two‐phase extraction is a versatile method for separating biological particles and macromolecules. In the present wok, the feasibility of using PEG 4000/potassium citrate aqueous two‐phase system (ATPS) for recovering and purifying lysozyme was investigated. Response surface methodology was used to determine an optimized ATPS for purification of lysozyme from crude hen egg white. RESULTS: Mathematical models concerning the purification of lysozyme from chicken egg white in polyethylene glycol 4000 (PEG 4000)/potassium citrate ATPS are established using response surface methodology. Screening experiments using fractional factorial designs show that the pH of the system significantly affects the recovery and purification of lysozyme. An optimized ATPS was proved to be at pH 5.5 and 30 °C and contained 18% (w/w) PEG, 16% (w/w) potassium citrate, 3.75% (w/w) potassium chloride (KCl). Under those conditions, the specific activity, purification factor and activity yield for lysozyme were 31100 U mg?1, 21.11 and 103%, respectively. CONCLUSION: The PEG 4000/potassium citrate ATPS has the potential to be applied to establish bioprocesses for the primary recovery and partial purification of lysozyme. © 2012 Society of Chemical Industry  相似文献   

14.
PEG-Dextran and PEG-salt aqueous two-phase systems (ATPS) have been applied to separate glutathione (GSH) from crude yeast extracts. Single-factor experiments were carried out to determine the important factors influencing the partition coefficient and extraction yield. The effect of PEG molecular weight, phase-forming components, PEG and Dextran concentration, pH value, and temperature on the GSH partitioning behavior in ATPS was investigated. Three factors, Dextran concentration, pH value, and temperature, were confirmed to have significant influence on the partition coefficient and extraction yield. These factors were further analyzed with the aid of central composite rotatable design and response surface methodology. The optimal conditions for GSH extraction in the PEGDextran system were determined, including PEG molecular weight 6,000, 10% PEG concentration, 14% Dextran concentration, pH 5.2, and temperature 32 °C. A high extraction yield (83.55%) of GSH from crude yeast extracts was achieved under these optimized conditions. This work is very helpful for developing one efficient and cost-effective process for the separation and purification of GSH from yeast broths.  相似文献   

15.
This article presents a study of polyethylene glycol 1000 (PEG1000)/potassium phosphate aqueous two-phase systems (ATPSs) forBacillus subtilis NS99 alkaline protease extraction. The objectives were to evaluate effects of system pH (7.5, 8.5,9.5, and 10.5), and NaCl concentration (0,4,7, and 10% (w/w)) on ATPS binodal curves, effects of system pH, NaCl concentration, and tie-line length (TLL) on alkaline protease partition coefficient (K) and yield (Y%) at room temperature (30±2 ‡C). Casein hydrolysis was used for determination of alkaline protease activity. It was revealed that system pH had the slightest effect on locations of binodal curves (except at pH 10.5). In contrast, addition of NaCl appeared to have a significant effect on phase characteristics since binodal curves of systems with NaCl (4-10% (w/w)) shifted significantly towards the origin in comparison to the ones without NaCl. Increased NaCl concentration from 4 to 10% (w/w), however, showed trivial influence on locations of the binodal curves. Changes of system compositions due to variation in system pH, TLL, and NaCl concentrations obviously resulted in varied obtainable K and Y% of alkaline proteases. Longer TLL and higher pH generally resulted in higher K. In contrast, the lower NaCl concentration, the higher K. Since the same phase volume ration (1:1) was used throughout the experiments, Y% depended solely on K. The most suitable PEG1000/potassium phosphate ATPS was determined at pH 9.5, and comprised PEG1000, potassium phosphate, and NaCl 18.0,13.0, and 0% (w/w), respectively. This system resulted in considerably high K, and Y% of 20.0, and 95.1%, respectively. Information from this study will be important for further development of an ATPS extraction unit for alkaline protease recovery.  相似文献   

16.
Alpha-ketoglutaric acid (α-KG), as an essential intermediate in biosynthesis and drug synthesis, has a broad application prospect. However, the lower product concentration and impurities in the α-KG production make the downstream separation more complex and costly. In this study, α-KG was separated from biotransformation broth by salting-out extraction (SOE) combined with solar-driven distillation. First, the aqueous two-phase system (ATPS) consisting of acetone/(NH4)2SO4 was selected by comparison. The effects of acetone/(NH4)2SO4 concentration, temperature, α-KG concentration, and pH on the distribution behavior of α-KG in ATPS were investigated. Under the optimized conditions, higher extraction efficiency and purity of α-KG were obtained in the actual biotransformation broth. In addition, solar evaporation was used to achieve preconcentration of the organic phase and salt recovery, significantly reducing energy consumption. The method is environmentally friendly and easy to operate, providing a new idea for separating low concentration products in biosynthesis.  相似文献   

17.
《分离科学与技术》2012,47(12):2849-2858
Abstract

An aqueous two‐phase system (ATPS) was presented with hydrophilic ionic liquid 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) and NaH2PO4 aqueous solution in this paper. The partitioning behavior of penicillin G in the ATPS was investigated. Concentrations of NaH2PO4, penicillin G, and [Bmim]Cl were evaluated to determine their effects on the partition coefficient and extraction yield of penicillin G. It was found that both of partition coefficient and extraction yield strongly depended on the concentration of [Bmim]Cl, penicillin and NaH2PO4. A high extraction yield of 93% was achieved with the following parameters: NaH2PO4 · 2H2O 40% (wt%), penicillin 45000~50000 u/ml, [Bmim]Cl 20~21% (wt%). The [Bmim]Cl/NaH2PO4 system was also applied in a real filtration of penicillin G fermentation broth and the extraction yield was averaged at 91.5%. It is worthy noting that the working pH value of ATPS was at the range of 5~6, no emulsification and protein denaturation could be observed.  相似文献   

18.
Catalase from Amsonia orientalis was purified by ATPS, and its efficiency was compared against hydrophobic interaction chromatography. Activity recovery and purification fold of purified catalase by ATPS were examined under varying experimental conditions. The effects of various factors such as type of phase-forming salts, (PEG) mass, with their different concentrations, pH and temperature effects on partitioning were investigated. The highest activity recovery (156%) and purification fold (8.67) of catalase were obtained in the ATPS system containing 10% (g/g) PEG4000, 15% (g/g) Na2SO4 at pH 6.0 and room temperature. In hydrophobic interaction chromatography, the enzyme has been purified 12.54-fold with 57.5% recovery. The molecular weight of catalase was determined as 75 kDa by SDS-PAGE.  相似文献   

19.
《分离科学与技术》2012,47(8):1831-1841
Abstract

The behavior of zirconium and hafnium in PEG 2000‐Na2SO4‐HCl aqueous biphasic system has been investigated. The dependences of HCl concentration (0.185–0.55 M), extraction temperature (298–318 K), and extraction time (5–120 min) on distribution ratios have been determined. Extraction of this metals in PEG 2000‐Na2SO4‐H2SO4 and PEG 2000‐Na3Cit‐HCl systems has been also studied. The sulfate and citrate complexes of Zr and Hf prefer salt‐rich phase in contrast to chloride complexes which pass into PEG rich phase in about 50% (w/w) to the greatest degree in room temperature and at short extraction time. The increase of distribution ratios (D*Zr=3.75, D*Hf=4.31) was observed after addition of water soluble organic ligand ‐ tiron (4,5‐dihydroxy‐m benzenedisulfonic acid disodium salt). The results obtained in studied conditions are not very useful for the separation of zirconium and hafnium.  相似文献   

20.
《分离科学与技术》2012,47(6):1195-1213
Abstract

Two separation methods, aqueous two‐phase (ATP) partitioning and cation‐exchange chromatography, were compared as alternative methods for the recovery of recombinant dog gastric lipase (r‐DGL) from extracts of transgenic corn endosperm. r‐DGL is a hydrophobic, acid‐stable protein targeted for stable expression in endosperm. Polyethylene glycol (PEG) ‐ salt ATP system parameters of PEG molecular weight, phase‐forming salt, NaCl addition, Triton X‐100 concentration and phase ratio were adjusted to achieve favorable partitioning. The purification factor and yield of r‐DGL in the bottom phase of a PEG 3350 (14.2%)‐Na2SO4 (8.5%)‐NaCl (0.5%)‐Triton X‐100 (2 mM) system at pH 4 were 1.5 and 80%, respectively. A higher purification factor of 2.3 and nearly 100% yield of r‐DGL was obtained in the top phase of a PEG 3350 (9.4%)‐phosphate (14.3%)‐NaCl(1.5%)‐Triton X‐100 (2 mM) system at pH 4.0. The yield, purification factor, and concentration factor were 90%, 7.7, and 3.6, respectively, for the alternative of cation‐exchange on CM‐Sepharose. Countercurrent ATP partitioning with 3–7 stages was calculated to achieve a purification factor equivalent to that from cation exchange but with a lower concentration factor. While the cation exchange was favored on this basis, the two approaches were close enough that further optimization and economic analysis would be needed to be definitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号