首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, wastewater treatment requirements for a typical village in the agricultural belt of India has been discussed. Investigations have been made on the available water resources and wastewater generation from the use of water in domestic applications and meeting the requirements for the household livestock. Innovative techniques are described to treat the wastewater generated in the village with the available discarded materials. The energy requirement of the wastewater treatment system could be met from a mix of conventional and the renewable energy resources. There is a gap in the traditional energy supply and demand of the village, which can be bridged with the use of renewable energy.  相似文献   

2.
Agricultural residues are a promising source of biomass energy. However, agricultural residues are seasonally available and loosely distributed over large geographical areas and hence require spatio-temporal assessment. Satellite image is a handy input for such assessment and high resolution image could increase the preciseness of estimation. In the present study, rice cropland is mapped using high resolution WorldView-2 satellite image in a rural area of Assam, India. The rice cropland map in combination with agricultural statistics is then analyzed in GIS in order to assess rice straw availability for potential bioenergy generation. About 54% land of study area belongs to rice cropland, which can contribute 5360 tonnes surplus rice straw per annum (equivalent to 83,296 GJ). Potential electric power capacity from the surplus rice straw in the study area is 523.50 kW. However, at individual village level the potential varies from 4.45 kW to 28.69 kW. Considering the power crisis in India, the findings of this work are expected to assist policy makers and biomass energy developers in decision making process. Particularly, this paper generated information on village level rice straw residue availability and subsequently potential electric power capacity. Such information is limited in the India expect for few states.  相似文献   

3.
A survey of household energy consumption pattern has been carried out in a village, Bibipur, district Jind, Haryana, India, during 2004. The households surveyed covered heterogeneous population belonging to different income groups, education groups and social groups. Studies were made on the total energy available, total energy required and energy consumption in different sectors domestic, agricultural, transport, rural industries and miscellaneous uses. The total energy available from all the sources (animate, biomass/non-conventional and inanimate sources) in the village is 468,205 MJ and the requirement for all the activities and from all the resources is 592,220 MJ. There is a big gap between energy supply and demand for the village. There is more availability of non-conventional energy resources as compared to conventional energy resources and some resources are unexploited. Therefore, to meet the balance of energy demand and supply, non-conventional resources should be exploited.In domestic sector, maximum energy is used in cooking (52.1%) and 45% of it is supplied from non-conventional energy sources and 10% from conventional energy sources. Calculations were made by considering all the energy resources for average per capita energy consumption and it was 20.02 MJ/day per capita. Electricity is used mainly for lighting and power, while gas is preferred for cooking.In agricultural sector, energy consumption for different activities was calculated and it was found that maximum energy consumption is in irrigation (41.7%) and minimum in transplanting. In agricultural sector, maximum energy comes from conventional energy sources (about 60%) and from non-conventional energy sources it is only about 30%. From the study, it was found that maximum population having good economic conditions like electricity very much as an energy source followed by LPG, biogas, coal, firewood and agricultural residues.  相似文献   

4.
This paper provides an overview of the present status of geothermal energy world-wide. Although the origin of this form of energy dates back in history, its impetus (with the notable exceptions of Italy and Iceland) was the ‘energy crisis’ of the mid to late 1970s. A wide range of speculations were made during those years as to the potential contribution of geothermal energy to the world energy demand. The present lull in the energy scene allows a more realistic assessment of present and near future potential. Problem areas related to the development of the geothermal resource potential are also discussed. They address both natural, mainly liquid dominated, sources and the recovery of heat stored at depth in impervious rocks through man-made geothermal reservoirs known as the hot dry rock concept of heat mining.  相似文献   

5.
发展海洋能源转化技术是优化能源结构、拓展“蓝色经济”空间的战略要求。为此,设计了一种基于筏式波浪能转换和点头鸭型摩擦纳米发电机能量输出的耦合系统,并对影响系统中筏体装置部分捕能特性的压载吃水、筏体尺寸参数以及影响系统输出电势分布的尼龙球径、滚动距离参数进行了仿真分析。结果表明:增大筏体装置的吃水(增加压载)和优化筏体装置的尺寸都可以降低装置的固有频率,使其与波浪频率达到共振,从而可以提高装置捕获波浪能的能力;摩擦纳米发电机两电极之间的电势差随着尼龙球球径的增大呈现出先增大后减小的趋势,在球径为30 mm时电势差达到最大值,该电势差还随着尼龙球滚动距离的增大而增大,并在外部负载电阻为770 MΩ时实现了瞬时最大功率密度3.7 W/m3。由此可见,当在筏式波浪能转换装置中布置多个摩擦纳米发电机阵列时,完全可以将海洋中原本无法利用的大量低频波浪能转化为电能,从而满足深海传感器网络供电需求,这大大扩展了波浪能的发电潜力,使得蓝色能源在未来有望得到更有效地开发。  相似文献   

6.
In the paper, an attempt is made towards the development of a linear programming micromodel for determining an optimal mix of technologies for domestic cooking in the rural areas of India. A mathematical model involving common sources (including biomass, commercial and solar) and commercially available technologies is formulated along with the detailed technoeconomics of the different energy conversion routes. In order to make the developed model flexible, the cooking sector is divided into two subsectors, namely the low temperature thermal energy requirement and end uses requiring thermal energy at mediumhigh temperatures. The marginal costs of both, the different energy resources, and the possible energy conversion routes are discussed in the context of rural India. The paper forms a part of a larger exercise of formulating a micromodel for the design of a rural energy supply system involving the three major end uses of energy in rural areas of India, i.e. cooking, irrigation and lighting.  相似文献   

7.
Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers.  相似文献   

8.
The development of nations is an unquestionable requirement. A lot of challenges concerning health, education and economy are present. A discussion on these development models has occupied the minds of decision makers in recent years. When energy supply and demand is considered, the situation becomes critical and the crucial question is: how to improve the quality of life of developing countries based on available models of development that are related to the life style of developed countries, for which the necessary use and waste of energy are present? How much energy is essential to humanity for not so as to endangering the survival conditions of future generations? The human development index (HDI) establishes the relationship among energy use, economic growth and social growth. Here it can be seen that 75% of the world population has a significant energy consumption potential. This is a strong reason to consider that the sustainable development concepts on energy policies are strategic to the future of the planet. This paper deals with the importance of seeking alternative development models for human development balance, natural resources conservation and environment through rational energy use concepts.  相似文献   

9.
农村住宅能源使用结构的分析研究   总被引:4,自引:0,他引:4  
陈淑琴  李念平  乐地  高峰 《节能技术》2005,23(6):483-487
以湖南宁乡县莘田、江湾两村为研究对象,对农村住宅能耗情况进行了调查分析。莘田村为常规能源使用村,江湾村为沼气普及村。文章对比分析了两村的能耗现状及产生该现状的原因,进而定量分析了沼气替代生物质能和一次能源所带来的经济和环境效益。结论表明,以生物质能占据重要比例,多种能源并存的复杂能源结构在农村住宅用能中仍处于主导地位,且能耗量还处于较高水平;沼气的推广使用对优化能源使用结构,降低总能耗量及农户经济支出,减少有害气体的排放量以及保护生态平衡等具有积极作用。常规能源和生态能源两者的对比分析,为农村住宅能耗的未来发展提供了指导依据。  相似文献   

10.
This paper describes an integrated energy system planning approach for Wardha District in Maharashtra State, India, for the year AD 2000 and gives an optimal mix of new/conventional energy technologies using a computer-based mixed integer linear programming model. The district level planning is accomplished by successively applying in two stages a new statistical extrapolation technique for moving first from the village level energy scenarios based on surveys to the corresponding energy scenarios at the block level and then for moving next from the block level scenarios to the desired district level planning profile. The model is suitably scaled for obtaining the optimal results at the district level owing to limitations on the available memory on the PC-AT system in use. Energy options for seasonal crops have been considered explicitly in the model. Post-optimal analysis based on a linear programming model to study the effect of the variations in parameters on the optimal solution has been performed.  相似文献   

11.
The energy requirement in India is steadily increasing and this requirement is being met by both commercial and renewable energy sources. Due to the non-availability of sufficient resources and a considerable amount of emission of pollutants from commercial energy, it is now being felt that renewable energy has to be utilized to a greater extent. An optimization model was developed to determine the optimum allocation of renewable energy in various end-uses in 2020–2021, taking into account commercial energy requirement. In lighting end-use renewable energy to an extent of 1.27×1015 kJ can be utilized. Scenarios were developed for various parameters and sensitivity analysis was performed on the model. It was found that for a 3% increase in social acceptance of bio resources, there was 65% decrease in solar PV utilization and to that extent bioresources were introduced. Similar analysis was performed on the model by changing the demand, potential, reliability, emission and employment factors. The analysis revealed the critical parameters for the utilization of a renewable energy source. Using the critical parameters, appropriate policies can be formulated for promoting renewable energy sources.  相似文献   

12.
Pablo Faúndez   《Renewable Energy》2008,33(8):1768-1774
A model to explain and predict market-driven investment in renewable energy capital is proposed. The model is suitable for application to the biomass, wind, solar and ocean-derived energy industries. It basically assumes that, given a set of prices and a specific technology, the marginal efficiency of capital invested in these industries only depends on the productivity of the project's site and on its energy transport distance. As suggested by traditional investment theory, the model supposes that only those projects offering marginal efficiencies of capital above the current available rate of interest would be implemented, thus demarcating a region in the productivity–energy transport distance space where all the economically viable projects should lie. By relating this region to the geographic space available for development, total potential investment can be deduced. By using cash flows defined in variable energy transport distance and mean wind speed, a case study for the Chilean wind energy industry is presented. The use of the model to analyse the effect of alternative support schemes for wind energy in Chile is briefly demonstrated. It is concluded that for increasing the area economically available for the development of new wind farms, a research and development support scheme aimed at reducing investment cost of wind turbines by 25% is equivalent to a 20% price subsidy on energy.  相似文献   

13.
Integrated control by controlling both natural ventilation and HVAC systems based on human thermal comfort requirement can result in significant energy savings. The concept of this paper differs from conventional methods of energy saving in HVAC systems by integrating the control of both these HVAC systems and the available natural ventilation that is based on the temperature difference between the indoor and the outdoor air. This difference affects the rate of change of indoor air enthalpy or indoor air potential energy storage. However, this is not efficient enough as there are other factors affecting the rate of change of indoor air enthalpy that should be considered to achieve maximum energy saving. One way of improvement can be through the use of model guide for comparison (MGFC) that uses physical-empirical hybrid modelling to predict the rate of change of indoor air potential energy storage considering building fabric and its fixture. Three methods (normal, conventional and proposed) are tested on an identical residential building model using predicted mean vote (PMV) sensor as a criterion test for thermal comfort standard. The results indicate that the proposed method achieved significant energy savings compared with the other methods while still achieving thermal comfort.  相似文献   

14.
In future energy plans, adequate attention has not been paid to rural areas. We have chosen a most backward Silora Block in Rajasthan to carry out a thorough study to assess energy potential, energy requirements, and the local technical expertise available to fabricate and maintain energy gadgets. This block has 110 villages, a total population of 91,350, and a total area of about 117,030 hectares. An analysis of the total energy potentials including biomass, solar energy and wind energy available in the entire area has been worked out. It is found that this area has plenty of energy and only needs proper management for its utilization. The total energy requirements for cooking, lighting, irrigation, rural industries, drinking water, hospitals, entertainment, etc. have been estimated and suitable ways are suggested for the effective utilization of renewable resources to meet the energy demands. Fabrication of solar appliances by village carpenters will also serve to reduce rural underemployment to some extent.  相似文献   

15.
Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis.  相似文献   

16.
Both wind energy potential and the electricity that could be generated by the wind for the Syrian land have been evaluated. An appropriate computer program was especially prepared and designed to perform the required calculations, mainly the wind energy potential and the generated electricity, using the available meteorological data provided by the Syrian Atlas. The program is capable of processing the wind data for any specific area, that is of course, in accordance with the needed requirements in fields of researches and applications.Moreover, calculations show that a huge energy potential is available for direct exploitation and as much as twice the current electricity consumption in Syria can be generated by the wind resource.  相似文献   

17.
Recently, many efforts have been done to overcome increasing fuel consumption. One of the vital solutions is utilization of standalone renewable energy resources hybrid systems. This paper attempts to develop a cost-effective methodology to ascertain optimal design and energy management for a remote village. Different energy resources such as wind and solar, fuel cell, and energy storage systems are employed to satisfy total demands including agriculture, residential, school, and health center. Different hydrogen production methods are proposed to verify the efficiency of the developed methodology. In the proposed village, different waste types such as rice husk, maize straw, livestock, and residential wastes are used to generate the required hydrogen for fuel cells to generate electricity. The main objective of the proposed methodology is minimizing the total cost of the village including total costs of each Distributed Generation (DG), cost of natural gas consumption, penalty for interruption the demands, and cost of CO2 emission. A Particle Swarm Optimization (PSO) algorithm is employed to solve the optimization problem by minimizing the total system costs while the customers required Loss of Power Supply Probability (LPSP) is satisfied. The suggested hybrid system not only increases the renewable energy penetration but also decreases the natural gas consumption. The results achieved in the course of the present study depict that utilization of energy produced from different types of wastes plays a significant role in conserving fossil fuels and overcoming the fossil fuels depletion. It is concluded from the results that there is about a 17.46% reduction in natural gas consumption when all available waste is utilized. In addition, considering 100% availability for the animal manure reduces the natural gas consumption by reformer from 2.373 to 1.605 million liters which means reduction of the natural gas consumption is 32.35%. The results conclude that H2 produced by livestock waste is dominating among available wastes. However, there is about 18% reduction in the Cost of Energy (COE), when 100% availability is considered for this type of waste.  相似文献   

18.
Large-scale energy reduction campaigns focusing on households generally have two shortcomings. First, an energy reduction campaign is either personalized but time intensive or time extensive but generalized. Second, because only the direct energy requirements are addressed, only 50% of the total household energy requirement is subject to reduction. The other 50%, the indirect energy requirement, is much more difficult to calculate and address and therefore not subject to reduction.

In this paper, we describe a web-based tool that has the potential to overcome both of these shortcomings. The tool addresses direct as well as indirect energy requirements. By means of a simple expert system participants obtain personalized reduction options and feedback on the energy reduced. The tool was tested in Groningen (the Netherlands) with a sample of 300 households, resulting in a direct energy reduction of about 8.5% compared to a control group. The reduction in indirect energy was not statistically significant.  相似文献   


19.
Aggregating and forecasting demand are crucial parts of energy planning. While a large number of energy consumption surveys have been conducted in the past in the rural energy sector of India, the lack of sufficient data and its compilation, coupled with doubt about the quality of data, has made the task extremely difficult. This paper summarizes our recent effort to compile, computerize and analyze data from 638 village energy consumption surveys covering over 39,000 households, carried out by different organisations between 1985 and 1989. The details of the level of information provided in the survey reports, area of survey, land use pattern, asset ownership, etc., of the collated studies are presented. Results based on the analysis of the energy consumption data compiled are then discussed. The national average for rural domestic thermal energy consumption (excluding water and space heating) estimated through this work (629 kcal or 2.63 MJ per capita daily) is much similar to the rural domestic thermal energy requirement assumed in most energy planning exercises in India in the past. The useful thermal energy consumption varies from 325 to 1065 kcal/cap/d (1.36-4.46 MJ/cap/d) in the East Coast Plain and Hills and the Eastern Himalayan Regions, respectively. Reconfirming the predominance of firewood, the data reveals that the contribution of firewood to the domestic thermal energy consumption has remained at about 58% over the last three decades; dungcake and agricultural residues contribute almost equally in the remaining share. At the national level, our estimates indicate that at least 180 million tonnes of firewood, 40 million tonnes of dungcakes and 30 million tonnes of agricultural residues were consumed in the rural sector for meeting the domestic thermal energy requirement in 1991. The paper also compares the estimates with those based on other surveys in India.  相似文献   

20.
In India, the wind power generation has gained a high level of attention and acceptability compared to other renewable energy technologies. New technological developments in wind power design have contributed for the significant advances in wind energy penetration and to get optimum power from available wind. The yearly percentage increase in wind energy installation is highest for India and now ranks fourth in the world with an installed capacity of 6018 MW. This paper reviews the development of wind energy in India and five potential Indian states. The future growth pattern and time period to achieve the technical wind potential are predicted and analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号