首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
在基于虚拟同步发电机(VSG)控制的光伏及混合储能系统中,不同类型的储能之间存在协调配合问题,其荷电状态(SOC)也与VSG的控制策略密切相关。针对该问题,提出了一种基于VSG的光伏及混合储能系统的协调控制策略。在逆变器直流侧引入混合储能系统,并基于VSG控制原理对其进行功率分配。根据储能SOC与VSG虚拟惯性之间的定量关系,设计了一种改进的虚拟惯性自适应控制策略,并给出相关参数的选取原则,在改善系统输出频率和功率动态响应的同时,对储能SOC进行控制。基于MATLAB/Simulink进行仿真,结果表明所提控制策略可以有效改善系统电压和频率的稳定性,实现混合储能之间功率的合理分配,提高储能的充放电性能并延长其寿命。  相似文献   

2.
风电功率的随机波动会对电网的正常运行产生很大的影响,储能系统的接入能有效抑制风电功率波动。针对上述问题,提出一种应用自适应的集合经验模态分解(ensemble empirical mode decomposition,EEMD)进行频率分配并运用能量管理控制策略进行储能系统功率优化的混合储能系统平滑控制策略。该控制策略能实现风电功率的自适应分解,得到风电并网功率和混合储能系统内部功率的初级分配。同时运用能量管理控制策略,实现储能系统内部功率优化。算例结果表明,所提算法能自适应地实现风电功率的最优分解,所提控制策略能完成储能系统内部功率的合理优化并有效地平滑风电出力波动。  相似文献   

3.
电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了一种自适应时间常数的分频控制策略,时间常数根据混合储能系统(hybrid energy storage system, HESS)的SOC而动态调整以改变功率分配。首先,通过分析储能SOC与虚拟惯性的关系,并考虑储能充放电极限问题,研究兼顾SOC、电压变化率以及电压幅值的自适应虚拟惯性控制策略,提高系统惯性。然后,建立控制系统的小信号模型,分析虚拟惯性系数对系统的影响。最后,基于Matlab/Simulink搭建直流配电网仿真模型,验证了所提控制策略能合理分配HESS功率,提高超级电容器利用率,改善直流电压与功率稳定性。  相似文献   

4.
为确保电网频率安全稳定,混合储能联合光伏主动参与电力系统一次调频已成趋势,为此提出了一种混合储能联合光伏发电的一次调频控制策略。针对储能传统定系数下垂控制存在的储能易发生过充过放的问题,提出了储能自适应变系数下垂控制;为了充分利用2种储能的不同特性,提出了频率偏差自适应分配方法;同时设计了光储耦合控制模块,以弥补光伏功率备用容量和锂电池储能调频功率有限的不足。在Matlab/Simulink仿真平台进行不同负荷扰动场景下的仿真实验。仿真结果表明:所提控制策略可以显著提升光伏系统主动一次调频性能及其适应性。  相似文献   

5.
针对由多个储能单元组成的大型电池储能系统(BESS)不规则充放电导致的储能单元健康状态(SOH)和荷电状态(SOC)不一致性问题,研究储能单元内SOH差异与SOC一致性的关系。结合充放电优先级排序和自适应变异粒子群优化(AMPSO)算法,提出考虑储能单元SOH和SOC一致性的BESS功率分配策略。基于包含BESS、风/光发电、电动汽车和常规负荷的共直流母线型集中式微电网并网示范平台的实测数据,对所提功率分配控制策略与传统功率分配控制策略进行了对比仿真分析。仿真结果表明,所提控制策略可有效提高储能单元SOC的一致性,延长储能单元使用寿命,降低储能单元运行损耗,增强BESS双向调节能力。  相似文献   

6.
李志强  李赛  王凡凯 《现代电力》2020,37(6):646-653
针对由全钒液流电池、磷酸铁锂电池及超级电容 3种储能介质组成的混合储能系统,提出一种针对不同储能介质特性进行混合储能系统自适应功率分配及调节优化的风电功率波动平抑控制策略。通过二阶低通滤波算法进行针对不同储能介质特性的自适应功率分配及调节,同时考虑系统后续运行需求,进行基于SOC反馈的分段功率控制优化调整,使储能系统工作在正常区间的同时为后续运行时段提供一定的充放电空间,最后经过储能系统极限约束修正,实现对风电场输出功率波动的有效平抑。通过在储能型风电场项目中的应用实验,验证了此控制策略的有效性。  相似文献   

7.
采用燃料电池/电解槽/储氢罐/超级电容构建混合储能系统来平抑风电功率的波动性,实现风电平滑并网.针对风电功率的波动特性,结合风电并网波动率标准,提出自适应VMD算法,实现风电功率的自适应分解,得到风电并网功率和混合储能系统功率指令,根据燃料电池和电解槽出力需求,结合超级电容的荷电状态和储氢罐的储氢状态,提出一种能量管理控制策略,实现储能系统内部功率分配.算例结果表明,所提算法能自适应实现风电功率的最优分解,所提控制策略能完成储能系统内部功率的合理分配并有效地平滑风电出力波动,同时保证超级电容的荷电状态、储氢罐的储氢状态工作在合理区间.  相似文献   

8.
随着风力发电所占发电比例的上升,其随机性、波动性及间歇性对电网的影响不可忽视。基于超级电容和蓄电池组成的复合储能系统,提出了一种用于抑制风电功率波动的自适应复合储能控制策略,通过引入超级电容荷电状态反馈来实施对低通/高通滤波器时间常数的控制,在完成对风电波动功率平抑的同时,合理分配平抑功率,避免超级电容过充过放。最后通过仿真,针对春夏秋冬不同时间窗口下的功率波动进行平抑,验证了所提自适应控制策略的有效性。  相似文献   

9.
采用自适应小波包分解的混合储能平抑风电波动控制策略   总被引:5,自引:0,他引:5  
采用蓄电池和超级电容构建混合储能系统以平抑风电场输出功率波动,实现风电平滑并网。首先,针对不同风电出力场景下风电功率的波动特性,结合风电并网波动标准和混合储能系统性能特点,实现风电功率的自适应小波包分解和储能初级功率分配,得到风电并网功率和混合储能初级功率指令;其次,在混合储能系统内部,根据超级电容的荷电状态,利用模糊优化控制对蓄电池和超级电容的功率指令进行二次修正,得到优化后的混合储能功率分配指令。算例分析表明,所提策略能够自适应地实现风电功率的最优分解和合理分配,确保混合储能荷电状态工作在合理区间,有效改善风电输出功率波动平抑效果,保证混合储能系统长期稳定运行。  相似文献   

10.
微电网孤岛运行混合储能自适应控制策略   总被引:1,自引:0,他引:1  
蓄电池/超级电容器混合储能系统综合了超级电容器高功率密度和蓄电池高能量密度的优势,是储能技术未来发展方向之一。针对平抑微电网直流母线电压波动的应用需求,研究了蓄电池/超级电容器混合储能系统,建立了微电网孤岛运行状态混合储能系统等效电路模型。为充分保证混合储能系统整体性能,提出一种主从双环结构自适应控制策略,系统依据所设置的不同开环截止频率,对母线功率波动进行自适应响应,完成上层的功率自适应调节并使之平衡。针对负载电流不易测量的问题,提出基于扩张状态观测器的方法对其进行虚拟测量。仿真分析结果验证了所提控制策略的有效性与可行性。  相似文献   

11.
Grid operation and planning challenges arising out of large-scale integration of renewable power can to a large extent be solved by the use of energy storage systems (ESSs). The type and size of storage to be used may be decided by the amount of fluctuating power the storage charges or discharges to attain its objective. Storage systems can be used as single devices or as hybrid systems where two or more devices complement the working of each other. The objective of this paper is to find an accurate power and energy sizing methodology for storage devices working in a single or hybrid arrangement such that the power fed to the grid from a wind turbine generator is regulated to a constant value. A strategy for sizing of a hybrid ESS is proposed by choosing the long-term storage to be a battery energy system and the short-term device to be a flywheel and using frequency analysis techniques. In the case of flywheel energy storage system, the inertia and the gain of an integral controller applied to an induction-machine-based flywheel are obtained. The simulations are done in MATLAB.  相似文献   

12.
在风电场增设储能系统通过功率的动态补偿可以有效地平抑风电场的功率波动,改善风电电能质量,提高电网的风电接纳能力。综合考虑电池的荷电状态(SOC)和风电场输出功率波动抑制效果,提出了一种模糊自适应的控制策略,通过调节滤波时间常数防止电池的过载,通过在有功功率给定值上加上模糊调整量优化电池的SOC状态。仿真结果表明,该控制策略能够兼顾风电场功率波动抑制效果和储能电池的SOC状态,对储能电池的荷电状态进行优化,达到延长电池寿命的目的。  相似文献   

13.
为解决风电大规模接入电网可能导致电网惯性降低以及风机单机参与电网调频导致电网频率二次跌落的问题,提出了场站式风场调频控制模式。首先,在策略设计过程中,提出了不进行风机侧储能的设计原则,避免电网调频造成弃风,设计了场站控制高速通信硬件平台,推导了风机调频物理约束边界条件,建立了场站调频控制目标函数;其次,制定了基于约束条件的风机场站调频功率恢复策略,完成了不弃风条件下场站调频控制器的开发。实验数据及指标分析结果显示,场站控制器主动支撑电网的指标满足要求,风电场提供有功功率明显降低电网频率二次跌落风险。  相似文献   

14.
风电场的储能容量配置与系统的经济性及电网调度直接相关。考虑风电波动,在风电并网处融入氢储能和超级电容器储能构建风/氢系统模型,并研究了该系统的容量配置方法。提出以系统的总成本、能量缺失率和系统输出波动量的绝对值最小为目标,构建容量优化模型。该模型可在保证储能系统经济性的前提下,确保指定调度出力计划下风/氢系统的平滑输出,进而实现系统经济性与电网调度间的有效协调。采用快速非支配排序遗传算法(NSGA-II)进行容量优化求解,分析结果表明所提方法的有效性。  相似文献   

15.
提出了一种高风电渗透率下考虑电网频率支撑需求的储能系统配置方法.以频率变化率和频率偏差为限制条件,建立新能源系统所能承受的最大功率增量与等效惯性常数、调差系数以及风电渗透率等已知参数的联系.通过对3阶虚拟同步机控制策略下的储能系统容量与控制参数进行量化配置,提高不同风电渗透率系统对不平衡功率的消纳能力.以储能配置在频率支撑中贡献的等效单位调节功率为参考,对不同功率增量下储能系统的频率响应贡献、调频出力占比以及输出功率特性进行刻画与分析.仿真验证了该配置方法下的储能系统可控性强,能够较为精准地提供电网所需的有功调节量,有效改善风电并网环境.  相似文献   

16.
风电、光伏等新能源机组取代同步发电机组接入电网,使电网的惯性和一次调频备用容量下降,电网频率的暂态稳定性也随之下降。针对这一问题,通过分析储能控制器系数与电网频率动态之间的关系,提出了一种定量配置储能的方法。该方法能够维持新能源机组取代传统机组接入前后,系统惯性大小以及一次调频能力不变。同时,针对新能源机组输出功率的波动性会导致承担的负荷低于装机容量的问题,文章进一步根据新能源电站历史输出功率数据,通过设置置信水平的方式来确定储能容量大小,从而提升储能配置的经济性。仿真结果表明,所提储能配置方法能够定量补偿电网的惯性大小和一次调频备用容量,有效提升电网频率的暂态稳定性。  相似文献   

17.
针对大规模海上风电经柔直联网引起的受端电网惯量降低、频率调节能力下降等问题,提出了海上风电与柔直主动支撑系统频率的协调控制策略。在惯量支撑方面,利用直流电容能量主动支撑系统惯量,并通过直流电压建立风机转速与频率的耦合关系,提出了基于差异化转子动能调节的风电场惯量支撑协调控制策略,以提升受端电网惯量水平。在频率偏差调节方面,根据本地直流电压偏差量,提出了基于风机变速控制与桨距角控制的风电场一次调频策略,并设计了基于附加桨距角控制的风电场二次调频策略,以提高系统的频率稳定性。最后,设计了多时间尺度频率支撑控制策略的协调配合流程,并基于RT-LAB OP5600实时数字仿真平台验证了所提策略可有效提升系统的频率支撑能力。  相似文献   

18.
在高风电渗透率电力系统中,针对双馈感应风电机组的转子转速与电网频率解耦所造成的机组惯性与频率响应能力缺失的问题,提出了基于模糊逻辑控制的风—储系统协同运行控制策略。该控制策略通过在风—储控制系统中嵌入模糊逻辑控制器来决策风—储系统响应电网频率波动的总有功出力和风力机转子动能的调频参与系数。基于此,根据不同风速下的风电机组运行特性将风速分区,并针对各风速区间构建了适应该区间转速—功率特点的风—储系统运行策略,使风—储系统具备能适应多种风况的短期频率响应能力。仿真结果表明:文中所提出的风—储系统协同运行控制策略能有效提升风—储系统的惯性以及短期频率响应能力,不仅能使风—储系统的短期频率响应能力适应多种风况,还可避免风电机组退出调频造成的频率二次跌落问题,同时改善了高风电渗透率电力系统的频率稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号