首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Boost converters are widely used as power-factor corrected preregulators. In high-power applications, interleaved operation of two or more boost converters has been proposed to increase the output power and to reduce the output ripple. A major design criterion then is to ensure equal current sharing among the parallel converters. In this paper, a converter consisting of two interleaved and intercoupled boost converter cells is proposed and investigated. The boost converter cells have very good current sharing characteristics even in the presence of relatively large duty cycle mismatch. In addition, it can be designed to have small input current ripple and zero boost-rectifier reverse-recovery loss. The operating principle, steady-state analysis, and comparison with the conventional boost converter are presented. Simulation and experimental results are also given  相似文献   

2.
To develop practical thermoelectric generator (TEG) systems, especially radioisotope thermoelectric power supplies for deep-space exploration, a power conditioning stage with high step-up gain is indispensable. This stage is used to step up the low output voltage of thermoelectric generators to the required high level. Furthermore, maximum power point tracking control for TEG modules needs to be implemented into the power electronics stages. In this paper, the temperature-dependent electrical characteristics of a thermoelectric generator are analyzed in depth. Three typical high step-up power converters suitable for TEG applications are discussed: an interleaved boost converter, a boost converter with a coupled inductor, and an interleaved boost converter with an auxiliary transformer. A general comparison of the three high step-up converters is conducted to study the step-up gain, conversion efficiency, and input current ripples. The interleaved boost converter with an auxiliary transformer is found to be the most suitable topology for TEG applications, which is verified by experiments.  相似文献   

3.
为了有效降低电流纹波和提高转换器效率,提出一种新型交错并联同相降压升压DC/DC转换器。提出的结构通过采用输入/输出(I/O)磁耦合交错并联和阻尼网络技术,降低了开关的电压应力、内部电压振荡和I/O电流纹波,并提升了转换器的效率。采用状态空间平均法,在连续导通模式下分析了提出转换器的稳态运行,从理论上证明了其优势。样机的功率设置为360W,输出电压为36 V,模拟结果以及实验结果显示,当输出电流为6A时,转换效率最高达到96%,最大输入电流纹波百分比仅为9.4%,相较于其他类似转换器,提出的转换器具有效率较高和I/O电流纹波较低的优势。  相似文献   

4.
High-efficiency stepping up operation is an important feature of the converters used in renewable power applications due to the low voltage level of photo-voltaic arrays and fuel cells. Decreasing the switching losses of the converters is an effective solution for increasing the converter efficiency, especially in high-power applications. This article presents a novel zero-voltage-transition (ZVT) interleaved dc–dc boost converter that can be used in renewable power sources to reduce switching losses. The auxiliary circuit used in the proposed converter is composed of only one auxiliary switch and a minimum number of passive components without an important increase in the cost and complexity. The main advantage of the proposed converter is that it not only provides ZVT in the boost switches but also provides soft switching in the auxiliary switch. Another advantage of the proposed topology is that the semiconductor devices used in the converter do not have any additional voltage or current stresses. Also, it has a simple structure, low cost and ease of control. In this article, a detailed steady-state analysis of the proposed converter is presented. The theoretical analysis is verified via simulation and experimental studies which are in very good agreement.  相似文献   

5.
ABSTRACT

An interleaved frequency control soft switching converter is studied for solar power or fuel cell power applications. The proposed circuit topology contains two parallel current-fed circuit cells with interleaved pulse-width modulation operation. Thus, the ripple currents at input and output terminals are decreased. In each circuit cell, the proposed current-fed dc-dc converter includes boost circuit and resonant circuit to achieve current ripple-free on low voltage side and less switching losses on active devices. The boost circuit and the resonant circuit have same active devices to decrease power switches. Due to the resonant behaviour, the reverse recovery current loss on secondary diodes is removed. The voltage doubler circuit topology is accomplished on secondary-side to reduce diode counts and conduction loss. The performance and effectiveness of the developed interleaved PWM current-fed converter are verified and confirmed by experiments.  相似文献   

6.
文中主要研究的对象是开环控制的交错并联BOOST PFC,且工作于临界续断模式,它的从变换器与主变换器在开通时同步,且主从变换器都工作在电流模式。文章指出只有这种主从方式能提供一个稳定的开环工作点。仿真实验设计了一台输入功率为400W,宽范围输入电压,400V输出电压的实验样机,实验结果验证了理论分析的正确性。  相似文献   

7.
An interleaved current-fed full bridge (ICFFB) dc-dc converter is proposed in this paper that has low input current ripple to meet the fuel cell demands. By interleaving two isolated CFFB converters with parallel input and series output connection, both input current ripple and output voltage ripple can be reduced. In addition, the size of the magnetic components and current stress of the semiconductor devices on the input side are also reduced. Similarly, smaller voltage rating components can be used on the output side. Only one digital signal processor microcontroller is used to generate phase-shifted gate signals and to implement a cascaded digital control system. The main features of the proposed converter are high efficiency, small passive component size, and small input current ripple. Experimental results for a 1.2-kW interleaved CFFB converter are provided in the paper  相似文献   

8.
Coupled inductor techniques supply a method to reduce the power converter size and weight and achieve ripple-free current. The boost power converter is a very popular topology in industry. However, the input-current ripple hinders efforts to meet electromagnetic interference (EMI) requirements. In particular, the input current becomes discontinuous and pulsating when the conventional boost power converter operates in the discontinuous inductor-current mode. This paper describes a boost power converter which has the same discontinuous properties as the conventional boost power converter. However, the proposed boost topology has continuous or ripple-free input current when it operates with discontinuous inductor-current. The proposed topology is compared with traditional converter topologies, such as the Sepic and Cuk power converters. Simulation results are presented. The prototype is built to demonstrate the theoretical prediction. The proposed boost topology is simple, with straightforward control [the same as pulse-width modulation (PWM)]  相似文献   

9.
An improved ZCS-PWM commutation cell for IGBT's application   总被引:3,自引:0,他引:3  
An improved zero-current-switching pulsewidth-modulation (ZCS-PWM) commutation cell is proposed, which is suitable for high-power applications using insulated gate bipolar transistors (IGBTs) as the power switches. It provides ZCS operation for active switches with low-current stress without voltage stress and PWM operating at constant frequency. The main advantage of this cell is a substantial reduction of the resonant current peak through the main switch during the commutation process. Therefore, the RMS current through it is very close to that observed in the hard-switching PWM converters. Also, small ratings auxiliary components can be used. To demonstrate the feasibility of the proposed ZCS-PWM commutation cell, it was applied to a boost converter. Operating principles, theoretical analysis, design guidelines and a design example are described and verified by experimental results obtained from a prototype operating at 40 kHz, with an input voltage rated at 155 V and 1 kW output power. The measured efficiency of the improved ZCS-PWM boost converter is presented and compared with that of hard-switching boost converter and with some ZCS-PWM boost converters presented in the literature. Finally, this paper presents the application of the proposed soft-switching technique in DC-DC nonisolated power converters  相似文献   

10.
Differential flatness of buck, buck–boost, and boost converter models is shown. Its benefits if used for controlling the output voltage of these converters are revealed by comparing the flatness-based control with passivity-based and linear control. Two observers for the boost converter are suggested one of which requires only the measurement of the converters output voltage. Both observers can be used with minor changes for the buck–boost converter. Two flatness-based online trajectory planning algorithms are suggested. They exploit the parametrization of the trajectories in the energy. One of them is designed to achieve fast setpoint transitions during converter start-up or despite sudden load steps while simultaneously respecting the converters physical constraints. The other one is considered for applications in power factor correction. Different stabilization strategies are compared. The viability of the observers, the algorithm, and the stabilization strategies are verified by simulations of switched nonideal converter models.  相似文献   

11.
Rapidly dropping power supply voltages and tight voltage regulation requirements for integrated circuits challenges power supply designers. A novel interleaved discharging (ID) approach is presented to reduce the output ripple in step-down switched-capacitor (SC) dc-dc converters. Simulation and experimental results of a four-stage SC dc-dc converter show that the ID approach can reduce the output ripple by a factor of three. The proposed approach also improves the converter efficiency by 7%. The ID method provides flexibility in the design optimization of step-down SC dc-dc converters  相似文献   

12.
A novel method for programming current in dc/dc converters operating in discontinuous conduction mode is described in this paper. The control variable is the product of the square of the duty cyle and the switching period, i.e., D/sup 2/T, which is directly proportional to input and output currents of a discontinuous-mode converter. A method of controlling D/sup 2/T is applied to converters that utilize one switch (or one set of synchronous switches) for achieving two control functions. In particular a single-switch two-output boost converter, in which a continuous-mode converter and a discontinuous-mode converter share one active switch, is studied. In this system, current-mode control is used to regulate the output voltage of the continuous-mode converter and the proposed D/sup 2/T control is used to regulate the other discontinuous-mode converter. The result is a generic current-mode controlled two-output converter.  相似文献   

13.
A novel voltage-bucking/boosting converter, named as KY buck–boost converter (i.e., 2D converter), is presented herein. Unlike the traditional buck–boost converter, this converter possesses fast transient responses, similar to the behavior of the buck converter with synchronous rectification. In addition, it possesses the nonpulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Furthermore, it has the positive output voltage, different from the negative output voltage of the traditional buck–boost converter. Above all, there are two types of KY buck–boost converters presented herein. In this paper, the basic operating principles of the proposed converters are first illustrated in detail, and second, some experimental results are offered to verify the effectiveness of the proposed topologies.   相似文献   

14.
This article suggests a cascade output voltage regulation algorithm for an N-phase interleaved DC/DC boost converter based on reference dynamics. The proposed algorithm has two advantages. The first is to guarantee the performance recovery property using the reference dynamics in the presence of a model-plant mismatch, and the second is to present a systematic procedure determining the stabilising control gains by solving an optimisation problem. The closed-loop performance of the proposed method is evaluated through simulations and experiments using a 3-kW four-phase interleaved DC/DC boost converter where the proposed method is compared with the feedback linearising method.  相似文献   

15.
This paper presents a novel power factor correction technique for single-phase boost type AC-to-DC converters in continuous conduction mode. Instead of using the inductor current or switching device current, in this paper, the diode current in the boost converter is used to formulate the duty ratio of the switch in a special way which makes the input current sinusoidal and in phase with the input voltage. To improve the dynamic performance and minimize the input current harmonic components, a new double-injection compensation method is employed in the voltage feedback loop. The power factor corrector has the following advantages: (1) operation with constant switching frequency; (2) elimination of input voltage sensing, error amplifier in the current loop and multiplier in the output voltage feedback loop; (3) minimal total harmonic distortion in the input current; (4) fast dynamic response of the output voltage loop; and (5) simple implementation of the control circuit. The principles of operation of the proposed control scheme are explained. Simulation and experimental results are presented to verify the feasibility of the control strategy  相似文献   

16.
This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.  相似文献   

17.
In this paper, a new parallel-connected single phase power factor correction (PFC) topology using two flyback converters is proposed to improve the output voltage regulation with simultaneous input power factor correction and control. This approach offers lower cost and higher efficiency by parallel processing of the total power. Flyback converter-I primarily regulates output voltage with fast dynamic response and processes 55% of the power. Flyback converter-II with ac/dc PFC stage regulates input current shaping and PFC, and processes the remaining 45% of the power. This paper presents a design example and circuit analysis for 200 W power supply. A parallel-connected interleaved structure offers smaller passive components, less losses even in continuous conduction inductor current mode, and reduced volt-ampere rating of dc/dc stage converter. TI-DSP, TMS320LF2407, is used for implementation. Simulation and experimental results show the performance improvement.  相似文献   

18.
This paper describes the use of current sensors for the control of power converters. No voltage sensor is required in the whole system. The sensed current and the rate of change of the inductor current in different circuit topologies are used to determine the input and output voltages of the converters, and for current programming and maximum current protection. Apart from reducing the number of sensors, the proposed method provides inherent electrical isolation between the power conversion stage and the controller and lessens noise-coupling problems. The proposed technique is illustrated with a current-programmed DC/DC boost regulator with feedforward and feedback control. The regulator's steady state and transient responses under input source and output load disturbances are presented.  相似文献   

19.
文中介绍了交错CRM—PFC的基本原理和基于R2A20112控制器的交错CRM—PFC变换器的设计。临界导电模式(CRM)是一种功率因数校正(PFC)控制方法。交错CRM—PFC允许升压变换器获得180°的相位移和在CRM操作,可使输入和输出电容器上的纹波电流大大地减小。  相似文献   

20.
New two-inductor boost converter with auxiliary transformer   总被引:5,自引:0,他引:5  
A new, two-inductor, two-switch boost converter topology and its variations suitable for applications with a large difference between the input and output voltage are described. The output voltage regulation of the proposed converters is achieved in a wide load and input-voltage range with constant-frequency control by employing an auxiliary transformer that couples the current paths of the two boost inductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号