首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In highly automated aerospace and industrial systems where maintenance and repair cannot be carried out immediately, it is crucial to design control systems capable of ensuring desired performance when taking into account the occurrence of faults/failures on a plant/process; such a control technique is referred to as fault tolerant control (FTC). The control system processing such fault tolerance capability is referred to as a fault tolerant control system (FTCS). The objective of FTC is to maintain system stability and current performance of the system close to the desired performance in the presence of system component and/or instrument faults; in certain circumstances a reduced performance may be acceptable. Various control design methods have been developed in the literature with the target to modify or accommodate baseline controllers which were originally designed for systems operating under fault-free conditions. The main objective of this article is to develop a novel FTCS design method, which incorporates both reliability and dynamic performance of the faulty system in the design of a FTCS. Once a fault has been detected and isolated, the reconfiguration strategy proposed in this article will find possible structures of the faulty system that best preserve pre-specified performances based on on-line calculated system reliability and associated costs. The new reconfigured controller gains will also be synthesised and finally the optimal structure that has the ‘best’ control performance with the highest reliability will be chosen for control reconfiguration. The effectiveness of this work is illustrated by a heating system benchmark used in a European project entitled intelligent Fault Tolerant Control in Integrated Systems (IFATIS EU-IST-2001-32122).  相似文献   

2.
《Advanced Robotics》2013,27(8):887-904
This article presents a robust sensor fault-tolerant control (FTC) scheme and its implementation on a flexible arm robot. Sensor faults affect the system's performance in the closed loop when the faulty sensor readings are used to generate the control input. In this article, the non-faulty sensors are used to reconstruct the faults on the potentially faulty sensors. The reconstruction is subtracted from the faulty sensors to generate a 'virtual sensor' which (instead of the normally used faulty sensor output) is then used to generate the control input. A design method is also presented in which the virtual sensor is made insensitive to any system uncertainties (which could corrupt the fault reconstruction) that cannot fit into the framework of the model used. Two fault conditions are tested: total failure and incipient faults. Then the scheme robustness is tested and evaluated through its implementation on two flexible arm systems, one with a flexible joint and the other with a flexible link. Excellent results have been obtained for both cases (joint and link); the FTC scheme produced system performance almost identical to the fault-free scenario, whilst providing an indication that a fault is present, even for simultaneous faults.  相似文献   

3.
This paper deals with the problem of fault‐tolerant control (FTC) for a class of nonlinear uncertain systems against actuator faults using adaptive logic‐based switching control method. The uncertainties under consideration are assumed to be dominated by a bounding system which is linear in growth in the unmeasurable states but can be a continuous function of the system output, with unknown growth rates. Several types of common actuator faults, e.g., bias, loss‐of‐effectiveness, stuck and hard‐over faults are integrated by a unified fault model. By utilizing a novel adaptive logic‐based switching control scheme, the actuator faults can be detected and automatically accommodated by switching from the stuck actuator to the healthy or even partly losing‐effectiveness one with bias, in the presence of large parametric uncertainty. In particular, two switching logics for updating the gain in the output feedback controllers are designed to ensure the global stability of the nominal (fault‐free) system and the boundedness of all closed‐loop signals of the faulty system, respectively. Two simulation examples of an aircraft wing model and a single‐link flexible‐joint robot are given to show the effectiveness of the proposed FTC controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a fault tolerant control (FTC) strategy using virtual actuators and sensors for linear parameter varying (LPV) systems is proposed. The main idea of this FTC method, initially developed for LTI systems, is to reconfigure the control loop such that the nominal controller could still be used without need of retuning it. The plant with the faulty actuator/sensor is modified adding the virtual actuator/sensor block that masks the actuator/sensor fault. The suggested technique is an active FTC strategy that reconfigures the virtual actuator/sensor on-line taking into account faults and operating point changes. The stability of the reconfigured control loop is guaranteed if the faulty plant is stabilizable/detectable. The LPV virtual actuator/sensor is designed using polytopic LPV techniques and linear matrix inequalities (LMIs). A two-tank system simulator is used to assess the performance of the proposed method. In particular, it is shown that the application of the proposed technique results in an improvement, in terms of performance, with respect to the LTI counterpart.  相似文献   

5.
In this paper, a fault tolerant control (FTC) for a dearomatisation process in the presence of faults in online product quality analysers is presented. The FTC consists of a fault detection system (FDI) and a logic for triggering predefined FTC actions. FDI is achieved by combining several process data driven approaches for detecting faults in online quality analysers. The FTC exploits the diagnostic information in adapting a quality controller (MPC) to the faulty situation by manipulating tuning parameters of the MPC to produce both proactive and reactive strategies. The proposed FTC was implemented, tested offline and validated onsite at the Naantali oil refinery. The successful testing and plant validation results are presented and discussed.  相似文献   

6.
In this paper, indirect adaptive state feedback control schemes are developed to solve the robust faulttolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems. A more general and practical model of actuator faults is presented. While both eventual faults on actuators and perturbations are unknown, the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online, as well as to estimate control effectiveness on actuators. Thus, on the basis of the information from adaptive schemes, an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically. According to Lyapunov stability theory, it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations. An example is provided to further illustrate the fault compensation effectiveness.  相似文献   

7.
In this paper, indirect adaptive state feedback control schemes are developed to solve the robust faulttolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems. A more general and practical model of actuator faults is presented. While both eventual faults on actuators and perturbations are unknown, the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online, as well as to estimate control effectiveness on actuators. Thus, on the basis of the information from adaptive schemes, an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically. According to Lyapunov stability theory, it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations. An example is provided to further illustrate the fault compensation effectiveness.  相似文献   

8.
This paper investigates fault‐tolerant control (FTC) for feedback linearizable systems (FLSs) and its applications. The dynamic effects caused by the actuator faults on the feedback linearized model are firstly analyzed, which reveals that under actuator faults, the control input in the linearized model is affected by uncertain terms. In the framework of model reference control, the first FTC strategy is proposed as a robust controller, which achieves asymptotic tracking control of the FLS under actuator faults. A disadvantage of this strategy is that it relies on explicit information about several parameters in the actuator faults. This requirement is later relaxed by combining the robust FTC strategy with an adaptive technique to generate the adaptive FTC law, which is then improved to alleviate possible chattering of the actuator and estimation drifting of the adaptive parameter. Finally, the proposed FTC strategies are evaluated by reference command tracking control of a pendulum and an air‐breathing hypersonic vehicle under actuator faults. Simulation results demonstrate good tracking performance, which confirms effectiveness of the proposed strategies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A passive fault-tolerant control strategy is proposed for systems subject to a novel kind of intermittent fault, which is described by a Bernoulli distributed random variable. Three cases of fault location are considered, namely, sensor fault, actuator fault, and both sensor and actuator faults. The dynamic feedback controllers are designed not only to stabilise the fault-free system, but also to guarantee an acceptable performance of the faulty system. The robust H performance index is used to evaluate the effectiveness of the proposed control scheme. In terms of linear matrix inequality, the sufficient conditions of the existence of controllers are given. An illustrative example indicates the effectiveness of the proposed fault-tolerant control method.  相似文献   

10.
This paper presents a solution to guarantee a fault‐tolerant control (FTC) of dynamic positioning (DP) vessel in the presence of the position reference system (PRS) faults by using the backstepping technique. The faults modes of PRS are modeled as an additive uncertainty in the feedback loop of the DP control system, and the bounds of the additive uncertainty are unknown. Through estimating online the unknown bounds on the basis of the designed adaptive mechanism, the robust adaptive fault‐tolerant controller (RAFTC), which takes the faulty PRS measurements as the inputs, is proposed rather than detecting and isolating them. Moreover, the developed RAFTC is proved by applying Lyapunov stability theory that the closed‐loop DP control system is uniformly bounded and the tracking error can be converged to zero asymptotically despite of the PRS failures. A simulation scenario on an offshore supply vessel model is provided to validate the effectiveness of the designed RAFTC, and the results show that the RAFTC has better performance and robustness compared with the ordinary fine‐tuned adaptive backstepping controller.  相似文献   

11.
This paper presents a real-time mechanism to tolerate faults occurring in a wind turbine (WT) system. This system is composed of a FAST coded simulator designed by the U.S. National Renewable Energy Laboratory. The demonstrated mechanism lies under the taxonomy of active fault-tolerant control (FTC) systems, namely online redesign based approach. In the proposed approach, we do not use any a priori information about the model of the turbine in real-time. In fact, we use online measurements generated by the WT. Based on the given control specifications, and the observed measurement an occurred fault is accommodated by reconfiguring the online controller such that the WT generates rated power even under faulty conditions. Second, no explicit fault diagnosis (FD) module is used in this approach. As a result, issues of model uncertainty, false alarms, etc. associated with an integrated FD and controller reconfiguration approach to FTC systems are not experienced here.  相似文献   

12.
In this work, the synthesis of fault tolerant control (FTC) for stochastic stability and H performance is studied. Occurrence of faults in the system is governed by a Markov Chain, so the open-loop system is modelled as a linear system with Markovian jumping parameters. The fault detection and isolation (FDI) decision is modelled as another random process that will indicate the fault mode after an exponentially distributed random delay. This stochastic formulation of FTC concerns the random nature of faults and the effect of random fault detection delay on the overall system, and can be regarded as an extension to the traditional reconfigurable control problem. In this paper, output feedback controllers are designed using an iterative LMI algorithm for mean exponential stability (MES) and the H performance. Model uncertainties and external disturbance are also considered in the robust design.  相似文献   

13.
In this paper, a robust actuator‐fault‐tolerant control (FTC) system is proposed for thrust‐vectoring aircraft (TVA) control. To this end, a TVA model with actuator fault dynamics, disturbances, and uncertain aerodynamic parameters is described, and a local fault detection and identification (FDI) mechanism is proposed to locate and identify faults, which utilizes an adaptive sliding‐mode observer (SMO) to detect actuator faults and two SMOs to identify and estimate their parameters. Finally, a fault‐tolerant controller is designed to compensate for these actuator faults, disturbances, and uncertain aerodynamic parameters; the approach combines back‐stepping control with fault parameters and a high‐order SMO. Furthermore, the stability of the entire control system is validated, and simulation results are given to demonstrate the effectiveness and potential for this robust FTC system.  相似文献   

14.
15.
The objective of this paper is to develop performance‐based fault detection (FD) and fault‐tolerant control (FTC) schemes for a class of nonlinear systems. To this end, the representation forms of nonlinear systems with faults and the controller parameterization forms are studied first with the aid of the nonlinear factorization technique. Then, based on the stable kernel representation and the stable image representation of the faulty nonlinear system, the stability performance of the closed‐loop system is addressed, respectively. The so‐called fault‐tolerant margin is defined to evaluate the system fault‐tolerant ability. On this basis, two performance‐based FD schemes are developed aiming at detecting the system performance degradation caused by system faults. Furthermore, to recover the system stability performance, two performance‐based FTC strategies are proposed based on the information provided by the FD unit. In the end, a numerical example and a case study on the three‐tank system are given to demonstrate the proposed results.  相似文献   

16.
17.
In this paper, a new active fault tolerant control (AFTC) methodology is proposed based on a state estimation scheme for fault detection and identification (FDI) to deal with the potential problems due to possible fault scenarios. A bank of adaptive unscented Kalman filters (AUKFs) is used as a core of FDI module. The AUKF approach alleviates the inflexibility of the conventional UKF due to constant covariance set up, leading to probable divergence. A fuzzy-based decision making (FDM) algorithm is introduced to diagnose sensor and/or actuator faults. The proposed FDI approach is utilized to recursively correct the measurement vector and the model used for both state estimation and output prediction in a model predictive control (MPC) formulation. Robustness of the proposed FTC system, H optimal robust controller and MPC are combined via a fuzzy switch that is used for switching between MPC and robust controller such that FTC system is able to maintain the offset free behavior in the face of abrupt changes in model parameters and unmeasured disturbances. This methodology is applied on benchmark three-tank system; the proposed FTC approach facilitates recovery of the closed loop performance after the faults have been isolated leading to an offset free behavior in the presence of sensor/actuator faults that can be either abrupt or drift change in biases. Analysis of the simulation results reveals that the proposed approach provides an effective method for treating faults (biases/drifts in sensors/actuators, changes in model parameters and unmeasured disturbances) under the unified framework of robust fault tolerant control.  相似文献   

18.
In this paper, design and development of fault-tolerant control (FTC) is investigated for linear systems subject to loss of effectiveness and time-varying additive actuator faults as well as an external disturbance using the fault-hiding approach. The main aim of this approach is to keep the nominal controller and to design a virtual actuator that is inserted between the faulty plant and the nominal controller in order to hide actuator faults and disturbances from the nominal controller, and consequently the performance of the system before and after the occurrence of actuator faults is kept to be the same. The proposed adaptive virtual actuator does not require a separated fault detection, isolation and identification (FDII) unit and both state and output feedback cases are considered. An illustrative example is given to demonstrate the effectiveness of the proposed adaptive virtual actuator in both cases.  相似文献   

19.
This article addresses the fault tolerant control (FTC) issue for a class of hybrid systems (HS) modelled by hybrid automata. Two kinds of faults are considered: continuous fault that affects each continuous system mode; discrete fault that affects the switching conditions. In these two faulty cases, the FTC design has two main objectives: (1) maintain the continuous performances including various stabilities of the origin and the output tracking/regulation behaviours along the trajectories of HS; (2) maintain the discrete specifications that have to be followed by HS, e.g. a desired switching sequence. The following three FTC methodologies are considered: FTC for HS with continuous stability goal; FTC for HS with discrete specifications; supervisory FTC design via hybrid control techniques. Some perspectives are also provided. This article provides the readers a survey on the main techniques that can be used to achieve these FTC goals of HS.  相似文献   

20.
This study presents a sensor cascading fault estimation and fault‐tolerant control (FTC) for a nonlinear Takagi‐Sugeno fuzzy model of hypersonic flight vehicles. Sensor cascading faults indicate the occurrence of source fault will cause another fault and the interval between them is really short, which makes it difficult to handle them in succession. A novel multidimensional generalized observer is used to estimate faults by integrating constant offset and time‐varying gain faults. Then, a fault‐tolerant controller is used to solve system nonlinearity and sensor fault problems. The observer and controller satisfy the performance index and are robust to external disturbances. A sufficient condition for the existence of observer and controller is derived on the basis of Lyapunov theory. Simulation results indicate the effectiveness of the proposed fault estimation and FTC scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号