首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The clocking schemes and signal waveforms of adiabatic circuits are different from those of standard CMOS circuits. This paper investigates the design approaches of low-power interface circuits in terms of energy dissipation. Several low-power interface circuits that convert signals between adiabatic logic and standard CMOS circuits are presented. All interface circuits and their layouts are implemented using TSMC 0.18 μm CMOS technology. The function verifications and energy loss tests for all interfaces are carried out using the net-list extracted from the layout. Full parasitic extraction is done. An adiabatic 8-bit carry look-ahead adder embedded in a static CMOS circuits is used to verify the proposed interfaces. The proposed interface circuits attain large energy savings over a wide range of frequencies, as compared with the previously reported circuits.  相似文献   

2.
研究采用三相交流电源的绝热时序电路.首先介绍了采用三相交流电源的双传输门绝热电路并分析其工作原理,在此基础上提出了性能良好的低功耗绝热D、T与JK触发器.使用绝热触发器设计时序系统的实例被演示.SPICE程序模拟表明,设计的电路具有正确的逻辑功能及低功耗的优点。  相似文献   

3.
Design and Evaluation of Adiabatic Arithmetic Units   总被引:1,自引:0,他引:1  
Adiabatic design is an attractive approach to reducingenergy consumption in VLSI circuits after exhausting the potentialof conventional energy-saving techniques. Despite the plethoraof adiabatic logic architectures that have been proposed in recentyears, several practical considerations in the design of nontrivialadiabatic circuits remain largely unexplored. Moreover, it isstill unclear whether adiabatic circuits of significant sizeand complexity can achieve substantial savings in energy dissipationover corresponding conventional designs. We recently designedseveral low-power arithmetic units using a dual-rail adiabaticlogic design style. We also designed static CMOS versions ofthese units and compared their energy dissipation with theircorresponding adiabatic designs. In this paper we describe ourimplementations, discuss architecture and logic-level issuesrelated to our adiabatic designs, and present the findings ofour empirical comparison. Our results suggest that adiabaticlogic can be used for the implementation of relatively complexVLSI circuits that dissipate significantly less energy than theircorresponding CMOS designs.  相似文献   

4.
By research on the switch-signal theory for multiple-valued logic circuits, the theory of three essential elements and the principle of adiabatic circuits, a design scheme for a double power clock ternary clocked transmission gate adiabatic logic (DTCTGAL) circuit is presented. The energy injection and recovery can be conducted by the bootstrapped NMOSFET, which makes the circuit maintain the characteristics of energy recovery as well as multiple-valued input and output. An XOR/XNOR circuit based on DTCTGAL is also presented using this design scheme. Finally, using the parameters of a TSMC 0.25 μm CMOS device, PSPICE simulation results indicate that the proposed circuits have correct logic and significant low power characteristics.  相似文献   

5.
Four-phase power clock generator for adiabatic logic circuits   总被引:1,自引:0,他引:1  
A circuit for a four-phase trapezoidal power clock generator for adiabatic logic circuits realised with a double-well 0.25 μm CMOS technology and external inductors is proposed. The circuit, at a frequency of 7 MHz which is within the optimum frequency range for adiabatic circuits realised with 0.25 μm CMOS technology, has a conversion efficiency higher than 80%, and is robust with respect to parameter variations  相似文献   

6.
We analyze the energy performance of a complete adiabatic circuit/system including the Power Clock Generator (PCG) at the 90 nm CMOS technology node. The energy performance in terms of the conversion efficiency of the PCG is extensively carried out under the variations of supply voltage, process comer and the driver transistor's width. We propose an energy-efficient singe cycle control circuit based on the two-stage comparator for the synchronous charge recovery sinusoidal power clock generator (PCG). The proposed PCG is used to drive the 4-bit adiabatic Ripple Carry Adder (RCA) and their simulation results are compared with the adiabatic RCA driven by the reported PCG. We have also simulated the logically equivalent static CMOS RCA circuit to compare the energy saving of adiabatic and non-adiabatic logic circuits. In the clock frequency range from 25 MHz to 1GHz, the proposed PCG gives a maximum conversion efficiency of 56.48%. This research work shows how the design of an efficient PCG increases the energy saving of adiabatic logic.  相似文献   

7.
Adiabatic pseudo-domino logic   总被引:1,自引:0,他引:1  
Wang  W.Y. Lau  K.T. 《Electronics letters》1995,31(23):1982-1983
A new logic structure, adiabatic pseudo-domino logic (APDL), which is the combination of adiabatic theory and CMOS domino logic is described. APDL circuits are compact, easy to cascade, and have outputs that are more stable than other adiabatic logic. Comprehensive circuit simulations show that APDL logic can recover over 80% of the energy dissipated in conventional static CMOS logic  相似文献   

8.
Low-power digital systems based on adiabatic-switching principles   总被引:2,自引:0,他引:2  
Adiabatic switching is an approach to low-power digital circuits that differs fundamentally from other practical low-power techniques. When adiabatic switching is used, the signal energies stored on circuit capacitances may be recycled instead of dissipated as heat. We describe the fundamental adiabatic amplifier circuit and analyze its performance. The dissipation of the adiabatic amplifier is compared to that of conventional switching circuits, both for the case of a fixed voltage swing and the case when the voltage swing can be scaled to reduce power dissipation. We show how combinational and sequential adiabatic-switching logic circuits may be constructed and describe the timing restrictions required for adiabatic operation. Small chip-building experiments have been performed to validate the techniques and to analyse the associated circuit overhead  相似文献   

9.
An efficient charge recovery logic circuit   总被引:1,自引:0,他引:1  
Efficient charge recovery logic (ECRL) is proposed as a candidate for low-energy adiabatic logic circuit. Power comparison with other logic circuits is performed on an inverter chain and a carry lookahead adder (CLA). ECRL CLA is designed as a pipelined structure for obtaining the same throughput as a conventional static CMOS CLA. Proposed logic shows four to six times power reduction with a practical loading and operation frequency range. An inductor-based supply clock generation circuit is proposed. Circuits are designed using 1.0-μm CMOS technology with a reduced threshold voltage of 0.2 V  相似文献   

10.
The authors propose a reversible energy recovery logic (RERL) circuit for ultra-low-energy consumption, which consumes only adiabatic energy loss and leakage current loss by completely eliminating non-adiabatic energy loss. It is a dual-rail adiabatic circuit using the concept of reversible logic with a new eight-phase clocking scheme. Simulation results show that at low-speed operation, the RERL consumes much less energy than the complementary static CMOS circuit and other adiabatic logic circuits  相似文献   

11.
Low-voltage ULSI design   总被引:1,自引:0,他引:1  
An overall view on low-voltage device and circuit design is presented, beginning with a discussion of the low-voltage limit. Low-voltage device design is then described. Low-voltage CMOS and BiCMOS logic circuits are discussed. Circuit techniques for the low-voltage DRAMs and SRAMs are presented. The low-voltage analog devices and circuits are considered. The future direction of the low-voltage and low-power ULSIs is discussed by comparing the switching energy of electronic devices and brain cells  相似文献   

12.
Zhang  Y. Chen  H.H. Kuo  J.B. 《Electronics letters》2002,38(24):1497-1499
A novel 0.8 V CMOS adiabatic differential switch logic (ADSL) circuit using the bootstrap technique for low-voltage low-power VLSI is reported. Using capacitance coupling effects from the bootstrap transistors with the related isolating transistors, this 0.8 VADSL circuit has a 52% smaller propagation delay time, consuming 26% less power as compared to the energy efficient logic circuit.  相似文献   

13.
We propose a new fully reversible adiabatic logic, nMOS reversible energy recovery logic (nRERL), which uses nMOS transistors only and a simpler 6-phase clocked power. Its area overhead and energy consumption are smaller, compared with the other fully adiabatic logics. We employed bootstrapped nMOS switches to simplify the nRERL circuits. With the simulation results for a full adder, we confirmed that the nRERL circuit consumed substantially less energy than the other adiabatic logic circuits at low-speed operation. We evaluated a test chip implemented with 0.8-μm CMOS technology, which included a chain of nRERL inverters integrated with a clocked power generator. The nRERL inverter chain of 2400 stages consumed the minimum energy at Vdd=3.5 V at 55 kHz, where the adiabatic and leakage losses are about equal, which is only 4.50% of the dissipated energy of its corresponding CMOS circuit at Vdd=0.9 V. In conclusion, nRERL is more suitable than the other adiabatic logic circuits for the applications that do not require high performance but low energy consumption  相似文献   

14.
New high-speed low-power BiCMOS nonthreshold logic (BNTL) circuits are presented. These circuits offers a built-in CMOS and bipolar level conversion and are suitable for reduced power supply voltage. A 4-b carry lookahead generator (CLG) circuit is designed in BNTL, ECL, and CMOS using 0.8-μm BiCMOS technology. Circuit simulations show that this new logic provides speed comparable to or better than that provided by emitter-coupled logic (ECL) for lower power dissipation  相似文献   

15.
As the density and operating speed of complementary metal oxide semiconductor (CMOS) circuits increases, dynamic power dissipation has become a critical concern in the design and development—of personal information systems and large computers. The reduction of supply voltage, node capacitance, and switching activity are common approaches used in conventional CMOS. In adiabatic switching circuits, the current flow through transistors can be significantly reduced by ensuring uniform charge transfer over the entire available time. This paper presents the simulation of this current in two-phase clocked adiabatic static CMOS logic (2PASCL) and conventional CMOS. From the SPICE simulations, at transition frequencies from 1 to 12 MHz, a 4×4-bit array 2PASCL multiplier shows a maximum reduction in power dissipation of 77% relative to that of a static CMOS. The measurement results of a 4×4-bit array 2PASCL multiplier demonstrate a 57% reduction compared to a 4×4-bit array two-phase clocked adiabatic dynamic CMOS logic (2PADCL). These results indicate that 2PASCL technology can be advantageous when applied to low-power digital devices operated at low frequencies, such as radio-frequency identification (RFID) tags, smart cards, and sensors.  相似文献   

16.
In this paper, we proposed a reliable ultra-low-voltage low-power latch design based on the probabilistic-based Markov random field (MRF) theory ,  and  to greatly improve the ability of noise-tolerance. Through MRF mapping decomposition, we map the previous state and the current state compatible logic function of the latch into the MRF network separately. In this way, we can overcome the challenge of applying Markov random field theory to sequential noise-tolerant circuits. In order to further lower the hardware cost and circuit complexity of the chip, we apply the absorption law and H-tree logic combination techniques [4] to simplify the circuit complexity of the MRF noise-tolerant latch circuit. To preserve the noise tolerant capability of MRF latch, we utilize the cross-coupled latching mechanism in the output of MRF latch. Finally, we apply the proposed MRF latch design in a 16-bit carry-lookahead adder circuit. In TSMC 90 nm CMOS process, our proposed circuit can operate reliably under a lower supply voltage of 0.55 V with superior noise tolerance and consumes only 31 μW power, which is 59.2% lower as compared with the conventional CMOS latch design.  相似文献   

17.
Novel high speed BiCMOS circuits including ECL/CMOS, CMOS/ECL interface circuits and a BiCMOS sense amplifier are presented. A generic 0.8 μm complementary BiCMOS technology has been used in the circuit design. Circuit simulations show superior performance of the novel circuits over conventional designs. The time delays of the proposed ECL/CMOS interface circuits, the dynamic reference voltage CMOS/ECL interface circuit and the BiCMOS sense amplifier are improved by 20, 250, and 60%, respectively. All the proposed circuits maintain speed advantage until the supply voltage is scaled down to 3.3 V  相似文献   

18.
This paper describes BiCMOS level-converter circuits and clock circuits that increase VLSI interface speed to 1 GHz, and their application to a 704 MHz ATM switch LSI. An LSI with a high speed interface requires a BiCMOS multiplexer/demultiplexer (MUX/DEMUX) on the chip to reduce internal operation speed. A MUX/DEMUX with minimum power dissipation and a minimum pattern area can be designed using the proposed converter circuits. The converter circuits, using weakly cross-coupled CMOS inverters and a voltage regulator circuit, can convert signal levels between LCML and positive CMOS at a speed of 500 MHz. Data synchronization in the high speed region is ensured by a new BiCMOS clock circuit consisting of a pure ECL path and retiming circuits. The clock circuit reduces the chip latency fluctuation of the clock signal and absorbs the delay difference between the ECL clock and data through the CMOS circuits. A rerouting-Banyan (RRB) ATM switch, employing both the proposed converter circuits and the clock circuits, has been fabricated with 0.5 μm BiCMOS technology. The LSI, composed of CMOS 15 K gate logic, 8 Kb RAM, I Kb FIFO and ECL 1.6 K gate logic, achieved an operation speed of 704-MHz with power dissipation of 7.2 W  相似文献   

19.
Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.  相似文献   

20.
A new quasi-static energy recovery logic family (QSERL) using the principle of adiabatic switching is proposed in this paper. Most of the previously proposed adiabatic logic styles are dynamic and require complex clocking schemes. The proposed QSERL uses two complementary sinusoidal supply clocks and resembles the behavior of static CMOS. Thus, switching activity is significantly lower than dynamic logic. In addition, QSERL circuits can be directly derived from static CMOS circuits. A high-efficiency clock generation circuitry, which generates two complementary sinusoidal clocks compatible to QSERL, is also presented in this paper. The adiabatic clock circuitry locks the frequency of clock signals, which makes it possible to integrate adiabatic modules into a VLSI system. We have designed an 8×8 carry-save multiplier using QSERL logic and two phase sinusoidal clocks. SPICE simulation shows that the QSERL multiplier can save 34% of energy over static CMOS multiplier at 100 MHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号