首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
腈纶接枝大豆蛋白质是腈纶差别化改性的重要方法,其对改进腈纶的结构性能,增加纤维的附加价值和提高经济效益都有重要作用。文中研究了在豆汁中直接对腈纶实施蛋白质接枝改性工艺条件对接枝效率的影响,结果表明:当纤维与豆汁溶液的比例为1∶20、10%NaOH溶液加入量为0.6 mL、接枝温度为80℃、接枝时间为3 min时,能够获得较好的接枝率。红外分析与电镜形貌观察表明,用豆汁直接对腈纶实施蛋白质接枝改性,能够获得明显的蛋白质接枝改性效果。  相似文献   

2.
腈纶表面接枝蛋白质改性纤维的结构与性能   总被引:2,自引:0,他引:2  
腈纶经过表面水解、酰氯化和接枝反应等过程在表面接枝上大豆蛋白质,制成了蛋白质接枝改性腈纶。对其进行物理力学性能分析、红外分析和电子显微镜形貌观察表明:改性腈纶在表面接枝蛋白质的效果明显,其表面完全覆盖上了完整致密的蛋白质表面膜层;X射线衍射分析表明,蛋白质接枝改性腈纶的超分子结构与普通腈纶相比并没有发生大的变化,基本保持了原有腈纶的高序态和低序态共存的结构特征。  相似文献   

3.
腈纶经过表面水解、酰氯化和接枝反应等过程在表面接枝上大豆蛋白质,制成了蛋白质接枝改性腈纶。对其进行物理力学性能分析、红外分析和电子显微镜形貌观察表明:改性腈纶在表面接枝蛋白质的效果明显,其表面完全覆盖上了完整致密的蛋白质表面膜层;X射线衍射分析表明,蛋白质接枝改性腈纶的超分子结构与普通腈纶相比并没有发生大的变化,基本保持了原有腈纶的高序态和低序态共存的结构特征。  相似文献   

4.
腈纶经过表面水解、酰氯化和接枝反应等过程可以在表面接枝上大豆蛋白质,制成蛋白质接枝改性腈纶。红外分析和电子显微镜形貌观察表明,蛋白质接枝改性腈纶的表面形成了完整致密的蛋白质表面膜层。蛋白质接枝改性腈纶的超分子结构与普通腈纶相比并没有发生大的变化,而是基本保持了原有腈纶的高序态和低序态共存的结构特征。改性纤维的物理力学性能可以满足纺织后加工及其服用性能要求。  相似文献   

5.
以过氧化苯甲酰(BPO)为引发剂,采用二步化学接枝法对聚丙烯纤维进行接枝丙烯酸改性,利用正交分析法研究了引发温度、BPO浓度、接枝温度、接枝时间及丙烯酸(AA)浓度对纤维接枝率的影响,并评价了改性前后纤维与水泥基体的界面结合性能.结果表明:上述因素对纤维接枝率的影响大小为引发温度> BPO浓度>接枝时间>接枝温度>AA浓度,最佳反应条件为引发温度90℃,BPO 4.50×10-2 mol/L,接枝时间60 min,接枝温度75℃,AA 1.4 mol/L,此时纤维接枝率达13.12%;经化学接枝改性后,聚丙烯纤维表面亲水性和粗糙度增大,与水泥基体的界面结合得到增强,纤维掺量为0.05%(体积分数)时,聚丙烯纤维增强水泥砂浆的抗开裂性能比增大了26.6%,抗塑性收缩开裂性能显著增强.  相似文献   

6.
以过氧化苯甲酰(BPO)为引发剂, 采用二步化学接枝法对聚丙烯纤维进行接枝丙烯酸改性, 利用正交分析法研究了引发温度、BPO浓度、接枝温度、接枝时间及丙烯酸(AA)浓度对纤维接枝率的影响, 并评价了改性前后纤维与水泥基体的界面结合性能。结果表明: 上述因素对纤维接枝率的影响大小为引发温度>BPO浓度>接枝时间>接枝温度>AA浓度, 最佳反应条件为引发温度90℃, BPO 4.50×10-2mol/L, 接枝时间60 min, 接枝温度75℃, AA 1.4 mol/L, 此时纤维接枝率达13.12%; 经化学接枝改性后, 聚丙烯纤维表面亲水性和粗糙度增大, 与水泥基体的界面结合得到增强, 纤维掺量为0.05%(体积分数)时, 聚丙烯纤维增强水泥砂浆的抗开裂性能比增大了26.6%, 抗塑性收缩开裂性能显著增强。  相似文献   

7.
选取了天然剑麻纤维为原料,利用化学接枝改性技术制备了剑麻抗菌纤维。考察了反应时间、反应温度以及溶液pH值对剑麻纤维表面接枝纳米TiO2和表面形貌的影响,确定了最佳制备工艺条件为:反应溶液pH=5、温度为75℃、反应时间为2h。通过扫描电镜、X-射线衍射分析仪、红外光谱仪和X-射线能谱分析仪等方法对产品的表面形貌、相结构、特征基团、成份含量进行了表征测试,抑菌圈实验表明载纳米TiO2剑麻抗菌纤维抑菌活性较高。  相似文献   

8.
以甲苯为溶剂,过氧化二苯甲酰(BPO)为引发剂,采用甲基丙烯酸羟乙酯(HEMA)通过自由基聚合接枝对氯化聚丙烯(CPP)进行了改性。研究了反应温度、反应时间、引发剂用量、单体用量对氯化聚丙烯改性胶粘剂粘接性能的影响,并对接枝产物进行了FTIR表征,确定出较理想的工艺条件为反应温度θ=110℃,反应时间t=4h,m(CPP):m(HEMA):m(BPO)=1:1:0.1。  相似文献   

9.
利用氯化原位接枝方法在聚乙烯(PE)主链上接枝丙烯酸-2-羟基乙酯(HEA),制得聚乙烯氯化接枝丙烯酸-2-羟基乙酯,记作:CPE-cg-HEA。以红外光谱(IR)和核磁共振氢谱(1H-NMR)对其结构进行了分析;同时讨论了反应条件,包括反应温度,产物氯含量,原料配比以及氯气流量对产物接枝率的影响。结果表明,反应温度为110℃时,接枝率较高;CPE-cg-HEA的接枝率随HEA用量增加而提高,当HEA加入量达4~8份时,接枝率较高;随着氯含量的增加,反应时间延长,产物接枝率逐渐增大。  相似文献   

10.
偶联剂改性纳米硅溶胶的接枝率及稳定性   总被引:3,自引:0,他引:3  
为改善纳米硅溶胶与有机物间的亲和性及分散稳定性,用硅烷偶联剂对碱性纳米硅溶胶进行表面接枝改性。分析了偶联剂用量、反应温度和反应时间对接枝率、分散稳定性及微观形貌的影响。结果表明,偶联剂KH560更适合做碱性纳米硅溶胶的表面改性剂,且制备的改性纳米硅溶胶表面可接枝KH560;从接枝率变化梯度来看,KH560用量对接枝率影响最大,当KH560含量为12.5%、反应时间为5h、反应温度为60℃时,改性接枝率及Zeta电位绝对值最高,分别为7.37%和55.6mV。  相似文献   

11.
采用液相等离子体接枝技术改性聚丙烯腈(PAN)膜,在PAN膜表面引入亲水性单体氮乙烯吡咯烷酮(NVP).通过傅立叶红外光谱、DSC、XPS对PAN改性膜进行了表征,研究了单体浓度、温度、接枝时间对PAN改性膜纯水通量的影响,考察了在不同单体接枝温度下,PAN改性膜对NaCl、MgSO4混合盐体系的分离性能.  相似文献   

12.
为了寻求低价、环保的电镀废水处理方案,将廉价的聚丙烯腈(PAN)纤维与羟胺试剂反应对PAN纤维进行改性,使其上氰基螯合获得偕胺肟基纤维。通过改变各种改性条件,探讨了改性条件对PAN改性纤维在重金属单离子溶液和多离子混合溶液中吸附性能的影响。结果表明:最佳改性条件为21.2 g/L PAN纤维,27.0 g/L盐酸羟胺,pH值为7.0,70℃下反应2 h;改性PAN纤维对模拟电镀废水中的Cu2+,Zn2+,Ni2+,Pb2+,Cd2+等重金属离子均有较好吸附性能,其中对Cd2+吸附效果最好,吸附量为55 mg/g;在多离子混合溶液中优先选择吸附Cd2+;改性PAN纤维再生效果优良,可重复利用。  相似文献   

13.
为节省预氧化进程的能耗和时间并优化聚丙烯腈(PAN)预氧纤维的性能,用H2O2改性PAN原丝,使其提前环化。采用FTIR、XPS等方法表征不同处理温度获得的未改性和改性PAN原丝。结果表明:H2O2水溶液在60℃改性PAN原丝时,H2O2可引发氰基环化,末端环发生亚胺、烯胺互变异构,由此出现亚氰基、类芳香伯胺;改性温度越高,改性PAN原丝的亚氰基含量、共轭程度越大。在模拟稳定化过程中,改性PAN原丝的类芳香伯胺可在较低温度下引发相邻氰基环化。使用氨水(NH3H2O)作为助剂获得改性PAN原丝,与未改性PAN原丝经历相同的预氧化进程,改性后的PAN原丝能在较短时间内达到适合的预氧化程度,且PAN预氧纤维径向结构的均匀性被改善,由此获得热稳定性更高的PAN预氧纤维。   相似文献   

14.
通过溶液聚合得到胺化碳纳米管(Ami-CNT)/聚丙烯腈(PAN)复合溶液, 采用湿法纺丝技术制备了Amid-CNT/PAN复合纤维。利用红外光谱、 拉曼光谱、 差示扫描量热仪、 热失重仪和扫描电镜等方法分析Amid-CNT对PAN纤维结构的影响。结果表明: Amid-CNT与PAN大分子之间有很强的化学作用力; Amid-CNT在复合纤维中具有很高程度的取向, 使PAN纤维中氰基的取向从1.61提高到了2.30; 复合纤维在空气中的起始放热温度相对PAN纤维从212.30℃提前到206.01℃, 反应放热量从3054J/g降低到2346J/g; 复合纤维比PAN纤维的起始失重温度提前了3.7℃, 在700℃时的剩余质量提高了13.5%; 复合纤维的断面比PAN纤维具有更多的絮状结构。   相似文献   

15.
为实现PAN纤维在低温碳化过程的结构调控,利用核磁共振碳谱(13C-NMR)研究了PAN预氧化纤维在500-800℃的低温碳化过程中骨架结构的演变.结果表明:在低温碳化过程中,随着碳化温度的升高,预氧化纤维骨架结构中饱和的CH、CH2和C=0结构逐渐消失,共轭-HC=C<和>C=N-逐渐减小,共轭>C=C<逐渐增加,纤...  相似文献   

16.
以丙烯腈(AN)为共聚单体,对酶解木质素(EHL)进行接枝共聚改性,得到了改性酶解木质素(PAN-g-EHL),随后将PAN-g-EHL与聚丙烯腈(PAN)共混制备出PAN/PAN-g-EHL共混纤维。对纤维样品进行了结构与性能表征,并与纯PAN纤维和PAN/EHL共混纤维进行对比。结果表明,聚丙烯腈成功接枝到酶解木质素上,PAN/PAN-g-EHL共混纤维在升温过程中,其放热峰形变宽变弱,放热焓下降。PAN/PAN-g-EHL共混纤维的力学性能与纯PAN纤维相差不大,相容性得到较大改善,吸湿性也得到明显提高。而PAN/EHL共混纤维的力学性能较纯PAN纤维有明显下降,二者之间相容性较差,纤维存在大量的孔洞缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号