首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

2.
3.
针对公用工程系统,基于可靠性分析提出新型的操作优化方法。该方法结合关键设备故障分析,采用系统的数学手段计算公用工程系统由于设备故障所产生的所有可能的操作状态及其概率。每一个状态进行单独的操作优化,其经济评价与该状态的概率相加权,以此获得系统整体经济评估。此方法中,设备的操作策略得到优化,如冷备用、热备用、负荷共享等。操作成本与设备故障造成的生产损失成本得以权衡。与传统的优化方法相比,该方法可获得更低的系统总成本。  相似文献   

4.
The acoustic emission behavior during tensile loading of two common epoxy systems of different ductility was investigated at different loading rates. At low threshold voltage, it was possible to register acoustic emissions before the final failure. Only very few emissions were recorded compared with the amount commonly recorded for metals and composite materials. The acoustic emissions detected were of burst-type, revealing a brittle damage accumulation process. They originated from the initiation and incremental growth of microcracks of stochastic nature. The events occurred before gross yielding and during the final “brittle” failure process. Basically no events were detected between gross yielding and the final failure during which large scale yielding, necking, and stable crack growth took place. The occurrence of events at the different loading rates was strongly influenced by the yielding behavior and fracture toughness, characterized by the yield stress σy and the plane-strain fracture toughness KIc respectively. KIc was inversely dependent on the total number of events up to gross yielding. The event distribution normalized with respect to the conditions at gross yielding was hardly affected by the loading rate.  相似文献   

5.
Experimental data from multiple studies show the coarsening of co‐continuous, high interfacial tension fluid systems is driven by capillary instabilities. Coarsening of low interfacial tension systems follows viscosity ratio dependence consistent with the pinch‐off of suspended short filaments although there is uncertainty of this interpretation. The attenuation of coarsening rates for both types follows a common dependence on phase volume fraction and viscosity ratio. Dimensional analysis provides an interpretation of the transition from linear coarsening to slower nonlinear coarsening as a balance of interfacial tension driven flow and a critical level of interconnectivity. The slowdown of coarsening is consistent with the formation of discrete domains which subsequently coexist with the remaining co‐continuous structure. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4140–4156, 2016  相似文献   

6.
Periodic systems are widely used in separation processes and in reaction engineering. They are designed for and operated at a cyclic steady state (CSS). Identifying and optimizing the CSS has proven to be computationally challenging. A novel framework for equation‐oriented simulation and optimization of cyclic processes is introduced. A two‐step reformulation of the process model is proposed, comprising, (1) a full discretization of the time and spatial domains and (2) recasting the discretized model as a differential‐algebraic equation system, for which theoretical stability guarantees are provided. Additionally, a mathematical, structural connection between the CSS constraints and material recycling is established, which allows us to deal with these conditions via a “tearing” procedure. These developments are integrated in a pseudo‐transient design optimization framework and two extensive case studies are presented: a simulated moving bed chromatography system and a pressure swing adsorption process. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2982–2996, 2018  相似文献   

7.
The current global prevalence of heart failure is estimated at 64.34 million cases, and it is expected to increase in the coming years, especially in countries with a medium-low sociodemographic index where the prevalence of risk factors is increasing alarmingly. Heart failure is associated with many comorbidities and among them, cancer has stood out as a contributor of death in these patients. This connection points out new challenges both in the context of the pathophysiological mechanisms involved, as well as in the quality of life of affected individuals. A hallmark of heart failure is chronic activation of the renin-angiotensin-aldosterone system, especially marked by a systemic increase in levels of angiotensin-II, a peptide with pleiotropic activities. Drugs that target the renin-angiotensin-aldosterone system have shown promising results both in the prevention of secondary cardiovascular events in myocardial infarction and heart failure, including a lower risk of certain cancers in these patients, as well as in current cancer therapies; therefore, understanding the mechanisms involved in this complex relationship will provide tools for a better diagnosis and treatment and to improve the prognosis and quality of life of people suffering from these two deadly diseases.  相似文献   

8.
Glass woven fabric/polypropylene laminates have been studied given their outstanding performance/cost ratio. Their flexural properties, mainly influenced by the adhesion between matrix and reinforcing fibers, have been investigated for systems containing maleated polypropylene (PP‐g‐MA) amounts ranging from 0% to 10% by weight. Results have shown that the presence of the compatibilizer improves both flexural modulus and strength, achieving plateau values approximately for 5 and 2 wt% of PP‐g‐MA, respectively. On the contrary, an inverse proportion between the compatibilizer content and the energy dissipated at perforation emerged from low velocity impact tests. The different dependence can be related to the failure mechanisms occurring at the fiber/matrix interface. These mechanisms are able to dissipate large amounts of energy through friction phenomena, and are pronounced when the fiber/matrix adhesion is weak. Pull‐out of fibers from the matrix has been detected, in particular, in systems containing low contents of compatibilizer and evidenced by the morphological analysis of fracture surfaces after failure. The large amount of energy dissipation allowed by the relative motion of fibers and matrix occurred before fiber breakage, as confirmed by the evaluation of the laminates ductility index. POLYM. COMPOS., 37:2452–2459, 2016. © 2015 Society of Plastics Engineers  相似文献   

9.
Conductive adhesives are used in electronics packaging applications for hybrid, die-attach and display assemblies. There are a number of issues of concern in the design of joints bonded using electronically-conductive adhesives (ECAs). An important issue is the cyclic fatigue behavior of conductive adhesive joints under elevated humidity environments, in which failures may occur due to cyclic mechanical and/or thermal stresses. This paper addresses the effect of elevated humidity levels on the fatigue and failure behaviors of ECAs. For this purpose, joints were prepared using stainless-steel adherend specimens and a commercial ECA, and tested under monotonic and cyclic fatigue conditions, at two humidity levels, namely 20% and 90% relative humidity at 28°C. Furthermore, joint failure mechanisms were analyzed using optical techniques, and joint conductivity measurements. Load versus number of cycles (PN) curves were generated using these specimens at three different load ratios (R), namely 0.1, 0.5 and 0.9, at a cyclic frequency of 150 Hz. The PN curves were parallel and the failure modes were found to be predominantly interfacial, accompanied by a significant decrease in joint conductivity.  相似文献   

10.
The currently used antimalarials suffer from drug resistance which is hampering the global management of malaria infection. To overcome drug resistance, they are administered as combination therapies which involve combination of two or more antimalarials. In this study, chloroquine diphosphate and curcumin were encapsulated onto prepared soy protein isolate‐carbopol‐polyacrylamide based hydrogels. The hydrogels were pH sensitive and exhibited enhanced swelling capability at pH 7.4. The hydrogels were biodegradable which was observed by their SEM images after drug release. The release mechanisms of both drugs were influenced by the degree of crosslinking of the soy protein isolate in the hydrogel network and the presence of the other drug in the network. The release mechanisms of both drugs from the hydrogel networks followed super case transport II. These results suggested that the hydrogels were potential dual drug delivery systems for antimalarials whereby both drugs could work over different period of time and hence, have the potential to overcome drug resistance that is common with the presently used antimalarials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43918.  相似文献   

11.
Coarse grained particle methods significantly reduce the computation cost of large‐scale fluidized bed simulation by lumping many real particles into a computation parcel. This research provides a method to estimate the errors associated with parcel size in large‐scale fluidized bed simulations. This uncertainty is first quantified in small scale domains by comparing results of discrete particle method with that employing coarse parcels of different sizes. Then, this uncertainty is correlated with parcel size and simulation domains consisting of a simple homogeneous cooling system and more complex bubbling and circulating fluidized beds. These correlations allow us to accurately estimate the uncertainty in large‐scale fluidized beds based solely on data obtained in smaller systems. The ability to estimate model‐related uncertainty in larger systems makes this method relevant for industrial applications. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2340–2350, 2018  相似文献   

12.
Industrial chemical plant diagnosis is the task of analyzing process data to sufficiently pinpoint the causes of abnormal events as fast and as accurately as possible so corrective action can be taken in a timely manner. The need to identify failures explicitly and support human centered decision making becomes pronounced for enterprises. Qualitative diagnostic models offer robustness in capturing diagnostic behaviors when there is little or no data on fault conditions. This article develops, analyzes, and demonstrates a qualitative diagnostic methodology called Causal Link Assessment (CLA). CLA avoids the drawbacks of other methodologies while leveraging several new concepts that include dynamic pattern generation, single time step modeling with multitime step interpretation, and discretized, low granularity dynamic modeling. CLA is demonstrated for an existing ethylene production facility. Model building, robustness, reusability, unaccounted for faults and failures and alignment with emerging Smart Manufacturing infrastructure concepts are discussed. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3420–3431, 2016  相似文献   

13.
Double cantilever beam fracture specimens were used to investigate rate dependent failures of model epoxy/steel adhesively bonded systems. Quasi-static tests exhibited time dependent crack growth and the maximum fracture energies consistently decreased with debond length for constant crosshead rate loading. It was also possible to cause debonding to switch between interfacial and cohesive failure modes by simply altering the loading rate. These rate dependent observations were characterized using the concepts of fracture mechanics. The time rate of change of the strain energy release rate, dG/dt, is introduced to model and predict failure properties of different adhesive systems over a range of testing rates. An emphasis is placed on the interfacial failure process and how rate dependent interfacial properties can lead to cohesive failures in the same adhesive system. Specific applications of the resulting model are presented and found to be in good agreement when compared with the experimental data. Finally, a failure envelope is identified which may be useful in predicting whether failures will be interfacial or cohesive depending on the rate of testing for the model adhesive systems.  相似文献   

14.
A comparative study of scratch behavior of single‐ and bi‐layer hard coatings deposited on poly(methyl methacrylate) substrates was investigated. Trimethylolpropane triacrylate (TMPTA) and pentaerythriol triacrylate (PETA) with different chemical structure were chosen as a top layer for bilayer coatings, and soft base layer was introduced with varying thickness from 5 to 15 µm to demonstrate effect of soft base layer thickness on scratch properties. The scratch properties were characterized by a progressive load scratch test in terms of the onset of critical normal load for coating failure (i.e., crack and delamination). The introduction of soft base layer caused increase of critical normal load for the onset of coating failures, which implied the excellent scratch properties in both TMPTA and PETA systems. Moreover, it was found that thicker soft base layer led to better scratch properties. POLYM. ENG. SCI., 56:528–535, 2016. © 2016 Society of Plastics Engineers  相似文献   

15.
A mesogenic epoxy resin (DGETAM) was cured with a series of curing agents having different lengths of long alkyl chain (nBAB, n = 4, 8, 12). Properties of the curings were compared with those of the DGEBA cured with the same curing agents revealing the achievement of a balance between certain levels of thermal properties and excellent mechanical properties. Moreover, some curing systems were prepared with twin mesogenic type epoxy resins (DGEnMA, n = 4, 6, 8, 10, 12) having different lengths of alkyl chain as a flexible spacer and the same curing agents (n′BABs). Combinations of the same concentrations of chemical structures in the basic units of the network structure were applied, and the thermal and mechanical properties of their curing systems were investigated. The fracture energy of each system increased considerably with the increase of the alkyl chain length that adjoins the two mesogenic groups in the epoxy resins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44244.  相似文献   

16.
A special system of concentrated sulfuric acid (H2SO4) and n‐hexane was used to study the droplet formation in a glass T‐junction microchannel with H2SO4 as the continuous phase. The effects of capillary number, flow ratio, and viscosity ratio on the droplet formation were investigated. The effect of gravity was explored by changing the flow direction in the microchannel. Results showed that the formation of transition flow pattern from squeezing to dripping is much easier for this special system compared with common aqueous/organic systems. This phenomenon is due to the considerably higher viscosity of H2SO4 than that of common aqueous phase and the higher density difference of the system compared with those of common systems. In addition to capillary number and flow ratio, gravity evidently affects the formation of droplets and flow patterns. The droplet size is smaller than that during the horizontal flow when the flow direction is consistent with gravity. By contrast, flow direction contrary to that of gravity results in larger droplet size than that at horizontal flow. This phenomenon provides guidance on the operation of these special systems in microchannels. Finally, mathematical models of droplet size at different flow patterns have been established, and these models can predict droplet size very well. This study could be helpful to extend the application of microreactors to new working systems. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4564–4573, 2016  相似文献   

17.
The P‐graph framework introduced by Friedler et al. (Chem Eng Sci. 1992;47:1973–1988) is a general mathematical methodology based on Graph Theory which is applicable to many process design problems. We propose an extension of the P‐graph framework and the associated MILP model to account for operating units and systems where the inputs and outputs are variable. This is important because the P‐graph framework in its current form would otherwise apply only to systems where the ratios of inputs to outputs are fixed. Consequently, it is difficult to apply the method to many emerging systems without the new mathematical model presented here. We discuss and develop the model in detail, and we then illustrate its application with the case study of an energy system. We establish a structure with optimal cost for a baseline heat demand, and we further explore how the energy system structure and the feedstocks change as the heat demand increases. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1143–1153, 2016  相似文献   

18.
Integrated approaches to the design of separation systems based on computer‐aided molecular and process design (CAMPD) can yield an optimal solvent structure and process conditions. The underlying design problem, however, is a challenging mixed integer nonlinear problem, prone to convergence failure as a result of the strong and nonlinear interactions between solvent and process. To facilitate the solution of this problem, a modified outer‐approximation (OA) algorithm is proposed. Tests that remove infeasible regions from both the process and molecular domains are embedded within the OA framework. Four tests are developed to remove subdomains where constraints on phase behavior that are implicit in process models or explicit process (design) constraints are violated. The algorithm is applied to three case studies relating to the separation of methane and carbon dioxide at high pressure. The process model is highly nonlinear, and includes mass and energy balances as well as phase equilibrium relations and physical property models based on a group‐contribution version of the statistical associating fluid theory (SAFT‐γ Mie) and on the GC+ group contribution method for some pure component properties. A fully automated implementation of the proposed approach is found to converge successfully to a local solution in 30 problem instances. The results highlight the extent to which optimal solvent and process conditions are interrelated and dependent on process specifications and constraints. The robustness of the CAMPD algorithm makes it possible to adopt higher‐fidelity nonlinear models in molecular and process design. © 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3484–3504, 2016  相似文献   

19.
Euler‐Lagrange simulations of fluidized beds of Geldart Group A particles containing different levels of fines are performed in periodic domains with various domain‐averaged solid volume fractions. Bubble‐like voids readily form when no fines are added. Introducing fines does not reduce bubble sizes if van der Waals force between particles is not accounted for. In contrast, the addition of van der Waals force produces significant changes. With no fines, bubbles are found to be suppressed at sufficiently high solid volume fractions, corresponding to the expanded bed regime for Group A particles. With the addition of fines, bubbles can be suppressed at lower solid volume fractions. With more fines added, bubbles can be suppressed at even lower solid volume fractions. When bubbles are suppressed, the system is found to be in a stable solid‐like regime. In this regime, forces on each particle are balanced, and the particle velocity fluctuations are dampened. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2271–2281, 2016  相似文献   

20.
ABSTRACT

The present paper aims to predict the bearing stress at failures of woven fabric kenaf fibre reinforced polymer with single-lap hybrid joints under quasi-static testing. Testing series investigated includes a variation of joint types, normalised W/d, lay-up types, plate thickness and bolt loads. Initially, cohesive failures appeared within adhesive layer, followed by net-tension failure mode in all testing series investigated associated with stress concentration. Strength prediction was carried out subsequently by implementing XFEM framework with an embedded traction-separation relationship within ABAQUS CAE. The experimental datasets and XFEM results were evaluated where good agreements were found in the combination of cross ply and thicker coupon with a discrepancy of less than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号